用boost spirit X3高效解析琐碎文件

Efficiently parse trivial files with boost spirit X3

我是 C++ 和 Boost Spirit X3 的新手。对于我的项目,我使用 boost spirit X3 将具有以下结构的两个文件中的地理社交图解析为 boost 图。

我有一个有效的实现。由于我之前没有任何使用这些库的经验,我想知道您对这种方法有何看法,以及您是否建议采用不同的方法。

在图形文件中,每条边一行。 在解析边时,我必须创建图形的节点,以防以前没有看到该节点。我使用语义操作,每次遇到节点 ID 时都会检查该节点是否已在图中。阅读整行后,我使用了一个语义动作,然后添加了边缘。

在位置文件中,给定时间节点的每个已知位置各占一行。我存储图中已知节点的第一个位置(使用自定义增强图 属性)。

我有具体的问题,但很乐意收到任何想法和建议:

图(表示图中的边)

[user1]     [user2]
0           3

地点

[user]  [check-in time]         [latitude]      [longitude]     [location id]
0       2010-10-19T23:55:27Z    30.2359091167   -97.7951395833      22847

精灵X3解析代码

// Parse the gowalla edge file
boost::spirit::istream_iterator file_iterator(edge_file), eof;

x3::phrase_parse(file_iterator, eof,
        // Begin grammar
        (
         *((x3::int_[add_vertex] >> x3::int_[add_vertex])[add_edge])
        ),
        // End grammar
        x3::space
        );

// Fail if we couldn't parse the whole edges file
if (file_iterator != eof) {
    std::cerr << "Couldn't parse whole edges file" << std::endl;
}

// Parse the gowalla location file
file_iterator = boost::spirit::istream_iterator(location_file);

x3::phrase_parse(file_iterator, eof,
        // Begin grammar
        (
         // vertex_id   time of checkin       latitude  longitude             location id
         *((x3::int_ >> x3::lexeme[*x3::graph] >> x3::double_ >> x3::double_)[add_location] >> x3::int_ >> x3::eol)
        ),
        // End grammar
        x3::blank
        );

// Fail if we couldn't parse the whole location file
if (file_iterator != eof) {
    std::cerr << "Couldn't parse whole location file" << std::endl;
}

X3 调用的语义动作

// Lambda function that adds vertex to graph if not already added
auto add_vertex = [&](auto& ctx){
    // Return if the vertex is already known
    if (vertices.find(x3::_attr(ctx)) != vertices.end())    {
        return false;
    }

    // Otherwise add vertex to graph
    auto v = boost::add_vertex(g);

    // And add vertex descriptor to map
    vertices[x3::_attr(ctx)] = v;
};

// Lambda function that adds edge to graph
auto add_edge = [&](auto& ctx){
    // _attr(ctx) returns a boost fusion tuple
    auto attr = x3::_attr(ctx);

    // Add edge from the vertices returned from context
    boost::add_edge(vertices[fusion::at_c<0>(attr)],
            vertices[fusion::at_c<1>(attr)], g);
};

// Lambda function that adds locations to vertices in the graph
auto add_location = [&](auto& ctx){
    // _attr(ctx) returns a boost fusion tuple
    auto attr = x3::_attr(ctx);
    auto vertex_id = fusion::at_c<0>(attr);

    if (location_already_added.find(vertex_id) != location_already_added.end()) {
        // Exit, as we already stored the location for this vertex
        return true;
    }
    location_already_added.insert(vertex_id);

    // Test if vertex is in our graph
    // We are parsing locations from a different file than the graph,
    // so there might be inconsistencies
    if (vertices.find(vertex_id) == vertices.end()) {
        std::cerr << "Tried to add location to vertex " << vertex_id << ", but this vertex is not in our graph" << std::endl;
        return false;
    }

    auto vertex = vertices[vertex_id];

    // Add location to the vertex
    g[vertex].latitude = fusion::at_c<2>(attr);
    g[vertex].longitude = fusion::at_c<3>(attr);

    return true;
};

提升图

struct vertex_property {
    double longitude;
    double latitude;
};

// Define our graph
// We use setS to enforce our graph not to become a multigraph
typedef boost::adjacency_list<boost::setS, boost::vecS, boost::undirectedS, vertex_property, edge_property > graph;

Q. Is it ok to use nested semantic actions as I do for the graph file? Does this hurt performance?

我不会这样做。只添加边缘批发可能更容易:

x3::parse(file_iterator, eof,
        *((x3::int_ >> '\t' >> x3::int_ >> x3::eol)[add_edge])
        );

其中 add_ege 可以简单为:

auto add_edge = [&](auto& ctx){
    // Add edge from from context
    vertex_decriptor source, target;
    auto tup = std::tie(source, target);

    fusion::copy(x3::_attr(ctx), tup);

    boost::add_edge(map_vertex(source), map_vertex(target), g);
};

Q. Is it recommended to parse the whole file at once with Spirit X3 or should I parse every line individually with Spirit X3?

我认为精神没有任何推荐。我会一次完成整个文件。我建议使用内存映射文件,这样您可以获得更高的效率(没有 multi_pass 迭代器自适应的随机访问迭代)。

一般备注:

  1. 您正在尝试使用 space 感知解析器 ,但 将它们与 istream_iterators 一起使用。你必须记得在流上重置skipws标志。

  2. vertices 地图似乎是一种资源浪费;考虑是否可以直接使用 [user] 东西 (vertex_id) 而不是转换为 vertex_descriptor.

这是一个清理后的版本,可以在大约 19 秒内很好地解析来自 https://snap.stanford.edu/data/loc-gowalla.html 的文件(这已经相当快了):

Live On Coliru

#include <boost/fusion/adapted/std_tuple.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/spirit/home/x3.hpp>
#include <boost/spirit/include/support_istream_iterator.hpp>
#include <fstream>
#include <iostream>

namespace x3 = boost::spirit::x3;
namespace fusion = boost::fusion;

struct vertex_property {
    double longitude;
    double latitude;
};

struct edge_property { };

struct Reader {
    bool read_edges(std::string fname) {
        // Lambda function that adds edge to graph
        auto add_edge = [this](auto& ctx){
            // Add edge from from context
            vertex_decriptor source, target;
            auto tup = std::tie(source, target);

            fusion::copy(x3::_attr(ctx), tup);

            boost::add_edge(this->map_vertex(source), this->map_vertex(target), g);
        };

        // Parse the gowalla edge file
        std::ifstream edge_file(fname);
        if (!edge_file) return false;

        boost::spirit::istream_iterator file_iterator(edge_file >> std::noskipws), eof;

        x3::parse(file_iterator, eof, *((x3::int_ >> '\t' >> x3::int_ >> x3::eol)[add_edge]));

        // Fail if we couldn't parse the whole edges file
        return (file_iterator == eof);
    }

    bool read_locations(std::string fname) {
        // Lambda function that adds locations to vertices in the graph
        auto add_location = [&](auto& ctx){
            // _attr(ctx) returns a boost fusion tuple
            auto attr = x3::_attr(ctx);
            auto vertex_id = fusion::at_c<0>(attr);

            if (!location_already_added.insert(vertex_id).second)
                return true; // Exit, as we already stored the location for this vertex

            // Test if vertex is in our graph
            // We are parsing locations from a different file than the graph, so
            // there might be inconsistencies
            auto mapped = mapped_vertices.find(vertex_id);
            if (mapped == mapped_vertices.end()) {
                std::cerr << "Tried to add location to vertex " << vertex_id << ", but this vertex is not in our graph" << std::endl;
                return false;
            }

            // Add location to the vertex
            auto& props = g[mapped->second];
            props.latitude  = fusion::at_c<1>(attr);
            props.longitude = fusion::at_c<2>(attr);

            return true;
        };

        // Parse the gowalla location file
        std::ifstream location_file(fname);
        if (!location_file) return false;

        boost::spirit::istream_iterator file_iterator(location_file >> std::noskipws), eof;

        x3::parse(file_iterator, eof,
                // [vertex_id]   [time of checkin]       [latitude]  [longitude]             [location] id
                *((x3::int_ >> '\t' >> x3::omit[*x3::graph] >> '\t' >> x3::double_ >> '\t' >> x3::double_)[add_location] >> '\t' >> x3::int_ >> x3::eol)
                );

        // Fail if we couldn't parse the whole location file
        return (file_iterator == eof);
    }

  private:
    // We use setS to enforce our graph not to become a multigraph
    typedef boost::adjacency_list<boost::setS, boost::vecS, boost::undirectedS, vertex_property, edge_property> graph;
    using vertex_decriptor = graph::vertex_descriptor;

    std::map<int, vertex_decriptor> mapped_vertices;
    std::set<int> location_already_added;
    graph g;

    // Lambda function that adds vertex to graph if not already added
    vertex_decriptor map_vertex(int id) {
        auto match = mapped_vertices.find(id);

        if (match != mapped_vertices.end())
            return match->second; // vertex already known
        else                      // Otherwise add vertex
            return mapped_vertices[id] = boost::add_vertex(g);
    };
};

int main() {
    Reader reader;
    if (!reader.read_edges("loc-gowalla_edges.txt"))
        std::cerr << "Couldn't parse whole edges file" << std::endl;

    if (!reader.read_locations("loc-gowalla_totalCheckins.txt"))
        std::cerr << "Couldn't parse whole location file" << std::endl;
}

映射文件

为了比较,替换为内存映射文件使它 MUCH 更快:它在 3 秒内完成(再次 超过 6 倍 ):

Live On Coliru

示例更改片段:

    boost::iostreams::mapped_file_source mm(fname);
    auto f = mm.begin(), l = mm.end();
    x3::parse(f, l, *((x3::int_ >> '\t' >> x3::int_ >> x3::eol)[add_edge]));

内存开销

分析后。看起来 map/set 可能还不错:

据我所知,该程序使用了 152MiB,其中只有 4.1 乍一看显示为 location_already_added

减少内存使用和时间

即便如此,用动态位集替换 set<int> location_already_added 并删除 map<int, vertex_descriptor> 确实进一步减少了内存使用 以及 程序 运行 时间。

这次它在 2 秒内完成(又节省了 33%)。

由于显而易见的原因,它大约需要 10% 的内存:138.7 MiB。

Live On Coliru

变化:

#include <boost/fusion/adapted/std_tuple.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/spirit/home/x3.hpp>
#include <boost/iostreams/device/mapped_file.hpp>
#include <boost/dynamic_bitset.hpp>
#include <fstream>
#include <iostream>

namespace x3 = boost::spirit::x3;
namespace fusion = boost::fusion;

struct vertex_property {
    double longitude;
    double latitude;
};

struct edge_property { };

struct Reader {
    Reader() {
        g.m_vertices.reserve(1024);
    }

    bool read_edges(std::string fname) {
        // Lambda function that adds edge to graph
        auto add_edge = [this](auto& ctx){
            // Add edge from from context
            vertex_decriptor source, target;
            auto tup = std::tie(source, target);

            fusion::copy(x3::_attr(ctx), tup);

            boost::add_edge(this->map_vertex(source), this->map_vertex(target), g);
        };

        // Parse the gowalla edge file
        boost::iostreams::mapped_file_source mm(fname);

        auto f = mm.begin(), l = mm.end();

        x3::parse(f, l, *((x3::int_ >> '\t' >> x3::int_ >> x3::eol)[add_edge]));

        // Fail if we couldn't parse the whole edges file
        return f == l;
    }

    bool read_locations(std::string fname) {
        boost::dynamic_bitset<> location_already_added(num_vertices(g));

        // Lambda function that adds locations to vertices in the graph
        auto add_location = [&](auto& ctx){
            // _attr(ctx) returns a boost fusion tuple
            auto const& attr = x3::_attr(ctx);
            auto vertex_id = fusion::at_c<0>(attr);

            if (location_already_added.test(vertex_id))
                return true; // Exit, as we already stored the location for this vertex
            location_already_added.set(vertex_id);

            // Test if vertex is in our graph
            // We are parsing locations from a different file than the graph, so
            // there might be inconsistencies
            auto mapped = this->mapped_vertex(vertex_id);
            if (graph::null_vertex() == mapped) {
                std::cerr << "Tried to add location to vertex " << vertex_id << ", but this vertex is not in our graph" << std::endl;
                return false;
            }

            // Add location to the vertex
            auto& props = g[mapped];
            props.latitude  = fusion::at_c<1>(attr);
            props.longitude = fusion::at_c<2>(attr);

            return true;
        };

        // Parse the gowalla location file
        std::ifstream location_file(fname);
        if (!location_file) return false;

        boost::iostreams::mapped_file_source mm(fname);

        auto f = mm.begin(), l = mm.end();

        x3::parse(f, l,
                // [vertex_id]   [time of checkin]       [latitude]  [longitude]             [location] id
                *((x3::int_ >> '\t' >> x3::omit[*x3::graph] >> '\t' >> x3::double_ >> '\t' >> x3::double_)[add_location] >> '\t' >> x3::int_ >> x3::eol)
                );

        // Fail if we couldn't parse the whole location file
        return f == l;
    }

    typedef boost::adjacency_list<boost::setS, boost::vecS, boost::undirectedS, vertex_property, edge_property> graph;
  private:
    // We use setS to enforce our graph not to become a multigraph
    using vertex_decriptor = graph::vertex_descriptor;

    graph g;

#if USE_VERTEX_DESCRIPTOR_MAPPING
    std::map<int, vertex_decriptor> mapped_vertices;

    vertex_decriptor map_vertex(int id) {
        auto match = mapped_vertices.find(id);

        if (match != mapped_vertices.end())
            return match->second; // vertex already known
        else                      // Otherwise add vertex
            return mapped_vertices[id] = boost::add_vertex(g);
    };

    vertex_decriptor mapped_vertex(int id) const {
        auto mapped = mapped_vertices.find(id);

        return mapped == mapped_vertices.end()
            ? return graph::null_vertex() 
            : mapped->second;
    }
#else
    static vertex_decriptor map_vertex(int id) { return id; }
    static vertex_decriptor mapped_vertex(int id) { return id; }
#endif
};

int main() {
    Reader reader;
    if (!reader.read_edges("loc-gowalla_edges.txt"))
        std::cerr << "Couldn't parse whole edges file" << std::endl;

    if (!reader.read_locations("loc-gowalla_totalCheckins.txt"))
        std::cerr << "Couldn't parse whole location file" << std::endl;
}