函数参数中的 RDD[Vector] 出错

Error with RDD[Vector] in function parameter

我正在尝试在 Scala 中定义一个函数以使用 Spark 对其进行迭代。 这是我的代码:

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SQLContext
import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.clustering.KMeans
import org.apache.spark.mllib.linalg.Vectors

import org.apache.spark.ml.feature.VectorIndexer
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.rdd._

    val assembler = new VectorAssembler()
          .setInputCols(Array("feature1", "feature2", "feature3"))
          .setOutputCol("features")
val assembled = assembler.transform(df)

// measures the average distance to centroid, for a model built with a given k.

def clusteringScore(data: RDD[Vector],k:Int) = {

val kmeans = new KMeans()
    .setK(k)
    .setFeaturesCol("features")
    .setPredictionCol("prediction")
    val model = kmeans.fit(data)

  val WSSSE = model.computeCost(data)   println(s"Within Set Sum of Squared Errors = $WSSSE")

}

(5 to 40 by 5).map(k => (k, clusteringScore(assembled, k))).
      foreach(println)

使用这段代码我得到了这个错误:

type Vector takes type parameters

我不知道这个错误是什么意思...

您没有显示您的导入,但您可能正在导入 Scala 标准集合'Vector(this one takes a type parameter, e.g. Vector[Int]) instead of the SparkML Vector,这是一种不同的类型,您应该像这样导入:

import org.apache.spark.mllib.linalg.Vector