在 R 中绘制 PCA 与一维
plot PCA vs one dimension in R
我有一个数据集,其中 10 个维度作为特征,1 个维度作为聚类编号(11 个维度一起)。如何使用 R 绘制数据 (PC1) 与簇数的 PCA?
qplot(x = not_null_df$TSC_8125, y = pca, data = subset(not_null_df, select = c (not_null_df$AVG_ERTEBAT,not_null_df$AVG_ROSHD,not_null_df$AVG_HOGHOGH,not_null_df$AVG_MM,not_null_df$AVG_MK,not_null_df$AVG_TM,not_null_df$AVG_VEJHE,not_null_df$AVG_ANGIZEH,not_null_df$AVG_TAHOD)), main = "Loadings for PC1", xlab = "cluster number")
实际上我写了这部分代码,我得到了这个错误:
Don't know how to automatically pick scale for object of type princomp. Defaulting to continuous.
Error: Aesthetics must be either length 1 or the same as the data (564): x, y
summary(not_null_df)
ï..QN NAMECODE GENDER VAZEYATTAAHOL TAHSILAT SEN SABEGHE
Min. : 1.00 Min. : 1.0 Min. :1.000 Min. :1.00 Min. :1.000 Min. :1.000 Min. :1.000
1st Qu.: 28.00 1st Qu.:11.0 1st Qu.:1.000 1st Qu.:1.75 1st Qu.:2.000 1st Qu.:1.000 1st Qu.:1.000
Median : 60.00 Median :13.0 Median :1.000 Median :2.00 Median :3.000 Median :1.000 Median :1.000
Mean : 68.63 Mean :11.7 Mean :1.152 Mean :1.75 Mean :2.578 Mean :1.394 Mean :1.121
3rd Qu.:103.25 3rd Qu.:14.0 3rd Qu.:1.000 3rd Qu.:2.00 3rd Qu.:3.000 3rd Qu.:2.000 3rd Qu.:1.000
Max. :190.00 Max. :16.0 Max. :2.000 Max. :2.00 Max. :3.000 Max. :3.000 Max. :3.000
AVG_ERTEBAT AVG_ROSHD AVG_HOGHOGH AVG_MM AVG_MK AVG_TM AVG_VEJHE
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
1st Qu.: 5.333 1st Qu.: 4.125 1st Qu.: 1.750 1st Qu.: 5.000 1st Qu.: 3.125 1st Qu.: 5.981 1st Qu.: 4.556
Median : 7.000 Median : 5.875 Median : 3.500 Median : 7.727 Median : 5.000 Median : 8.000 Median : 6.333
Mean : 6.730 Mean : 5.787 Mean : 4.001 Mean : 6.903 Mean : 4.890 Mean : 7.390 Mean : 6.095
3rd Qu.: 8.425 3rd Qu.: 7.656 3rd Qu.: 6.000 3rd Qu.: 9.182 3rd Qu.: 6.688 3rd Qu.: 9.204 3rd Qu.: 7.778
Max. :10.000 Max. :10.000 Max. :10.000 Max. :10.000 Max. :10.000 Max. :10.000 Max. :10.000
AVG_ANGIZEH AVG_TAHOD AVG_SOALAT TSC_8125 avg
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. :1.000 Min. :0.000
1st Qu.: 5.000 1st Qu.: 5.833 1st Qu.: 4.000 1st Qu.:1.000 1st Qu.:4.788
Median : 7.000 Median : 7.667 Median : 7.000 Median :2.000 Median :6.301
Mean : 6.549 Mean : 7.171 Mean : 6.025 Mean :2.046 Mean :6.154
3rd Qu.: 8.750 3rd Qu.: 9.000 3rd Qu.: 8.000 3rd Qu.:3.000 3rd Qu.:7.599
Max. :10.000 Max. :10.000 Max. :10.000 Max. :3.000 Max. :9.978
我可以通过此代码获取 pca:
pca <- princomp(not_null_df, cor=TRUE, scores=TRUE)
summary(pca)
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9
Standard deviation 2.887437 1.28937443 1.12619079 1.08816449 0.98432226 0.91257779 0.90980017 0.82303807 0.74435256
Proportion of Variance 0.438805 0.08749929 0.06675293 0.06232116 0.05099423 0.04383149 0.04356507 0.03565219 0.02916109
Cumulative Proportion 0.438805 0.52630426 0.59305720 0.65537835 0.70637258 0.75020406 0.79376914 0.82942133 0.85858242
Comp.10 Comp.11 Comp.12 Comp.13 Comp.14 Comp.15 Comp.16 Comp.17 Comp.18
Standard deviation 0.70304085 0.67709130 0.62905993 0.59284646 0.50799135 0.48013732 0.4476952 0.39317004 0.378722707
Proportion of Variance 0.02601402 0.02412909 0.02082718 0.01849826 0.01358185 0.01213325 0.0105490 0.00813593 0.007548994
Cumulative Proportion 0.88459644 0.90872553 0.92955271 0.94805097 0.96163282 0.97376607 0.9843151 0.99245101 1.000000000
Comp.19
Standard deviation 1.838143e-08
Proportion of Variance 1.778301e-17
Cumulative Proportion 1.000000e+00
我的目标是绘制 pca(只是 Comp.1
)与 TSC_8125(即簇数)
函数 princomp() returns 一个包含 7 个元素的列表。这些是 sdev、loadings、center、scale、n.obs、scores 和 call。您可以在函数帮助页面(您可以通过键入 ?princomp 访问)中找到这些的描述。根据情节的目的,这里感兴趣的可能是分数。
scores: the scores of the supplied data on the principal components.
loadings: the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors).
访问列表元素的最简单方法是通过 $ 运算符。因此,pca$scores 或 pca$loadings 将分别访问它们。 scores和loadings都是class矩阵,每一列对应一个主成分(第一个col是第一个主成分,依此类推。)
因此,要访问第一主成分分数,您可以使用
comp.1 <- pca$scores[,1]
你可以使用
根据簇号绘制此图plot (comp.1 ~ not_null_df$TSC_8125)
如果您愿意,也可以使用 qplot 绘制它
qplot(x = not_null_df$TSC_8125, y = comp.1, main = "Scores for PC1", xlab = "cluster number")