计算事件之间的时间

Calculating time between events

我有一条消息流经多个系统,每个系统都使用时间戳和 uuid messageId 记录消息进入和退出。我正在通过以下方式摄取所有日志:

filebeat --> logstash --> elastic search --> kibana

因此我现在有这些事件:

@timestamp                      messageId                               event 
May 19th 2016, 02:55:29.003     00e02f2f-32d5-9509-870a-f80e54dc8775    system1Enter
May 19th 2016, 02:55:29.200     00e02f2f-32d5-9509-870a-f80e54dc8775    system1Exit
May 19th 2016, 02:55:29.205     00e02f2f-32d5-9509-870a-f80e54dc8775    system2Enter
May 19th 2016, 02:55:29.453     00e02f2f-32d5-9509-870a-f80e54dc8775    system2Exit

我想生成一份关于在每个系统中花费的时间的报告(最好是堆叠的条形图或柱形图):

messageId                               in1:1->2:in2
00e02f2f-32d5-9509-870a-f80e54dc8775    197:5:248

最好的方法是什么? Logstash 过滤器? kibana 计算字段?

您可以使用 Logstash aggregate filter only, however, you'd have to substantially re-implement what the elapsed filter 已经做到这一点,所以这是一种耻辱,对吧?

然后让我们混合使用 Logstash aggregate filter and the elapsed filter。后者用于测量每个阶段的时间,前者用于将所有时间信息聚合到最后一个事件中。

旁注:您可能需要重新考虑您的时间戳格式,使其更符合解析标准。我已将它们转换为 ISO 8601 以使其更易于解析,但您可以随意使用自己的正则表达式。

所以我从以下日志开始:

2016-05-19T02:55:29.003 00e02f2f-32d5-9509-870a-f80e54dc8775 system1Enter
2016-05-19T02:55:29.200 00e02f2f-32d5-9509-870a-f80e54dc8775 system1Exit
2016-05-19T02:55:29.205 00e02f2f-32d5-9509-870a-f80e54dc8775 system2Enter
2016-05-19T02:55:29.453 00e02f2f-32d5-9509-870a-f80e54dc8775 system2Exit

首先,我使用了三个 elapsed 过滤器(每个阶段 in11->2in2 一个过滤器),然后使用三个聚合过滤器来收集所有时间信息。它看起来像这样:

filter {
  grok {
    match => ["message", "%{TIMESTAMP_ISO8601:timestamp} %{UUID:messageId} %{WORD:event}"]
    add_tag => [ "%{event}" ]
  }
  date {
    match => [ "timestamp", "ISO8601"]
  }
  # Measures the execution time of system1
  elapsed {
    unique_id_field => "messageId"
    start_tag => "system1Enter"
    end_tag => "system1Exit"
    new_event_on_match => true
    add_tag => ["in1"]
  }
  # Measures the execution time of system2
  elapsed {
    unique_id_field => "messageId"
    start_tag => "system2Enter"
    end_tag => "system2Exit"
    new_event_on_match => true
    add_tag => ["in2"]
  }
  # Measures the time between system1 and system2
  elapsed {
    unique_id_field => "messageId"
    start_tag => "system1Exit"
    end_tag => "system2Enter"
    new_event_on_match => true
    add_tag => ["1->2"]
  }
  # Records the execution time of system1
  if "in1" in [tags] and "elapsed" in [tags] {
    aggregate {
      task_id => "%{messageId}"
      code => "map['report'] = [(event['elapsed_time']*1000).to_i]"
      map_action => "create"
    }
  }
  # Records the time between system1 and system2
  if "1->2" in [tags] and "elapsed" in [tags] {
    aggregate {
      task_id => "%{messageId}"
      code => "map['report'] << (event['elapsed_time']*1000).to_i"
      map_action => "update"
    }
  }
  # Records the execution time of system2
  if "in2" in [tags] and "elapsed" in [tags] {
    aggregate {
      task_id => "%{messageId}"
      code => "map['report'] << (event['elapsed_time']*1000).to_i; event['report'] = map['report'].join(':')"
      map_action => "update"
      end_of_task => true
    }
  }
}

在前两个事件之后,你会得到一个这样的新事件,它表明系统 1 已经花费了 197 毫秒:

{
                 "@timestamp" => "2016-05-21T04:20:51.731Z",
                       "tags" => [ "elapsed", "elapsed_match", "in1" ],
               "elapsed_time" => 0.197,
                  "messageId" => "00e02f2f-32d5-9509-870a-f80e54dc8775",
    "elapsed_timestamp_start" => "2016-05-19T00:55:29.003Z"
}

第三个事件之后,你会得到一个这样的事件,它显示了system1和system2之间花费了多少时间,即5ms:

{
                 "@timestamp" => "2016-05-21T04:20:51.734Z",
                       "tags" => [ "elapsed", "elapsed_match", "1->2" ],
               "elapsed_time" => 0.005,
                  "messageId" => "00e02f2f-32d5-9509-870a-f80e54dc8775",
    "elapsed_timestamp_start" => "2016-05-19T00:55:29.200Z"
}

在第四个事件之后,你会得到一个像这个这样的新事件,它显示了 system2 花费了多少时间,即 248ms。该事件还包含一个 report 字段,其中包含消息的所有时间信息

{
                 "@timestamp" => "2016-05-21T04:20:51.736Z",
                       "tags" => [ "elapsed", "elapsed_match", "in2" ],
               "elapsed_time" => 0.248,
                  "messageId" => "00e02f2f-32d5-9509-870a-f80e54dc8775",
    "elapsed_timestamp_start" => "2016-05-19T00:55:29.205Z"
                     "report" => "197:5:248"
}

我不得不在 logstash 5.4 中对这项工作进行一些调整,这是修改后的代码。

filter {
  grok {
    match => ["message", "%{TIMESTAMP_ISO8601:timestamp} %{UUID:messageId} %{WORD:event}"]
    add_tag => [ "%{event}" ]
  }
  date {
    match => [ "timestamp", "ISO8601"]
  }
  # Measures the execution time of system1
  elapsed {
    unique_id_field => "messageId"
    start_tag => "system1Enter"
    end_tag => "system1Exit"
    new_event_on_match => true
    add_tag => ["in1"]
  }
  # Measures the time between system1 and system2
  elapsed {
    unique_id_field => "messageId"
    start_tag => "system1Exit"
    end_tag => "system2Enter"
    new_event_on_match => true
    add_tag => ["1->2"]
  }
  # Measures the execution time of system2
  elapsed {
    unique_id_field => "messageId"
    start_tag => "system2Enter"
    end_tag => "system2Exit"
    new_event_on_match => true
    add_tag => ["in2"]
  }
  # Records the execution time of system1
  if "in1" in [tags] and "elapsed" in [tags] {
    aggregate {
      task_id => "%{messageId}"
      code => "map['report'] = (event.get('elapsed_time')*1000).to_i"
      map_action => "create"
    }
  } 
  # Records the time between system1 and system2
  if "1->2" in [tags] and "elapsed" in [tags] {
    aggregate {
      task_id => "%{messageId}"
      code => "map['report'] << (event.get('elapsed_time')*1000).to_i"
      map_action => "update"
    }
  }
  # Records the execution time of system2
  if "in2" in [tags] and "elapsed" in [tags] {
    aggregate {
      task_id => "%{messageId}"
      code => "map['report'] << (event.get('elapsed_time')*1000).to_i"
      map_action => "update"
      end_of_task => true
    }
  }
}