从 Voronoi 单元获取有界多边形坐标

Getting a bounded polygon coordinates from Voronoi cells

我有点(例如,基站位置的纬度、经度对),我需要获取它们形成的 Voronoi 单元的多边形。

from scipy.spatial import Voronoi

tower = [[ 24.686 ,  46.7081],
       [ 24.686 ,  46.7081],
       [ 24.686 ,  46.7081]]

c = Voronoi(towers)

现在,我需要获取每个单元格的经纬度坐标中的多边形边界(以及此多边形围绕的质心是什么)。我也需要这个 Voronoi 有界。这意味着边界不会无限大,而是在边界框内。

给定一个矩形边界框,我的第一个想法是在这个边界框和 scipy.spatial.Voronoi 产生的 Voronoï 图之间定义一种交集操作。想法不一定好,因为这需要编写大量计算几何的基本函数。

但是,这是我想到的第二个想法(hack?):计算平面中一组 n 点的 Voronoï 图的算法的时间复杂度为 O(n ln(n)).如何添加点以将初始点的 Voronoï 单元约束在边界框中?

有界 Voronoï 图的解法

一张图胜过一场精彩的演讲:

我在这里做了什么?这很简单!初始点(蓝色)位于 [0.0, 1.0] x [0.0, 1.0]。然后我根据x = 0.0(边界框的左边缘)通过反射对称性得到左侧(即[-1.0, 0.0] x [0.0, 1.0])的点(蓝色)。根据 x = 1.0y = 0.0y = 1.0(边界框的其他边缘)的反射对称性,我得到了完成这项工作所需的所有点(蓝色)。

那我运行scipy.spatial.Voronoi。上图描绘了生成的 Voronoï 图(我使用 scipy.spatial.voronoi_plot_2d)。

接下来要做什么?只需根据边界框过滤点、边或面。并根据well-known公式得到每个面的质心,计算centroid of polygon。这是结果的图像(质心为红色):

展示代码前的一些乐趣

太棒了!它似乎工作。如果在一次迭代后我尝试 re-run 质心(红色)而不是初始点(蓝色)上的算法怎么办?如果我一次又一次地尝试呢?

步骤 2

步骤 10

第 25 步

酷! Voronoï 细胞倾向于最小化它们的 能量 ...

这是代码

import matplotlib.pyplot as pl
import numpy as np
import scipy as sp
import scipy.spatial
import sys

eps = sys.float_info.epsilon

n_towers = 100
towers = np.random.rand(n_towers, 2)
bounding_box = np.array([0., 1., 0., 1.]) # [x_min, x_max, y_min, y_max]

def in_box(towers, bounding_box):
    return np.logical_and(np.logical_and(bounding_box[0] <= towers[:, 0],
                                         towers[:, 0] <= bounding_box[1]),
                          np.logical_and(bounding_box[2] <= towers[:, 1],
                                         towers[:, 1] <= bounding_box[3]))


def voronoi(towers, bounding_box):
    # Select towers inside the bounding box
    i = in_box(towers, bounding_box)
    # Mirror points
    points_center = towers[i, :]
    points_left = np.copy(points_center)
    points_left[:, 0] = bounding_box[0] - (points_left[:, 0] - bounding_box[0])
    points_right = np.copy(points_center)
    points_right[:, 0] = bounding_box[1] + (bounding_box[1] - points_right[:, 0])
    points_down = np.copy(points_center)
    points_down[:, 1] = bounding_box[2] - (points_down[:, 1] - bounding_box[2])
    points_up = np.copy(points_center)
    points_up[:, 1] = bounding_box[3] + (bounding_box[3] - points_up[:, 1])
    points = np.append(points_center,
                       np.append(np.append(points_left,
                                           points_right,
                                           axis=0),
                                 np.append(points_down,
                                           points_up,
                                           axis=0),
                                 axis=0),
                       axis=0)
    # Compute Voronoi
    vor = sp.spatial.Voronoi(points)
    # Filter regions
    regions = []
    for region in vor.regions:
        flag = True
        for index in region:
            if index == -1:
                flag = False
                break
            else:
                x = vor.vertices[index, 0]
                y = vor.vertices[index, 1]
                if not(bounding_box[0] - eps <= x and x <= bounding_box[1] + eps and
                       bounding_box[2] - eps <= y and y <= bounding_box[3] + eps):
                    flag = False
                    break
        if region != [] and flag:
            regions.append(region)
    vor.filtered_points = points_center
    vor.filtered_regions = regions
    return vor

def centroid_region(vertices):
    # Polygon's signed area
    A = 0
    # Centroid's x
    C_x = 0
    # Centroid's y
    C_y = 0
    for i in range(0, len(vertices) - 1):
        s = (vertices[i, 0] * vertices[i + 1, 1] - vertices[i + 1, 0] * vertices[i, 1])
        A = A + s
        C_x = C_x + (vertices[i, 0] + vertices[i + 1, 0]) * s
        C_y = C_y + (vertices[i, 1] + vertices[i + 1, 1]) * s
    A = 0.5 * A
    C_x = (1.0 / (6.0 * A)) * C_x
    C_y = (1.0 / (6.0 * A)) * C_y
    return np.array([[C_x, C_y]])

vor = voronoi(towers, bounding_box)

fig = pl.figure()
ax = fig.gca()
# Plot initial points
ax.plot(vor.filtered_points[:, 0], vor.filtered_points[:, 1], 'b.')
# Plot ridges points
for region in vor.filtered_regions:
    vertices = vor.vertices[region, :]
    ax.plot(vertices[:, 0], vertices[:, 1], 'go')
# Plot ridges
for region in vor.filtered_regions:
    vertices = vor.vertices[region + [region[0]], :]
    ax.plot(vertices[:, 0], vertices[:, 1], 'k-')
# Compute and plot centroids
centroids = []
for region in vor.filtered_regions:
    vertices = vor.vertices[region + [region[0]], :]
    centroid = centroid_region(vertices)
    centroids.append(list(centroid[0, :]))
    ax.plot(centroid[:, 0], centroid[:, 1], 'r.')

ax.set_xlim([-0.1, 1.1])
ax.set_ylim([-0.1, 1.1])
pl.savefig("bounded_voronoi.png")

sp.spatial.voronoi_plot_2d(vor)
pl.savefig("voronoi.png")

我在使用 scipy 的 voronoi 函数和创建 CVD 时遇到了很多麻烦,所以这些精彩的帖子和评论提供了极大的帮助。作为一名编程新手,我试图理解 Flabetvvibes 答案中的代码,我将分享我对它如何工作的解释以及 Energya 和我自己的修改。我还在这个答案的底部完整地发布了我的代码版本

import matplotlib.pyplot as pl
import numpy as np
import scipy as sp
import scipy.spatial
import sys
import copy

eps = sys.float_info.epsilon

# Returns a new np.array of towers that within the bounding_box
def in_box(towers, bounding_box):
    return np.logical_and(np.logical_and(bounding_box[0] <= towers[:, 0],
                                         towers[:, 0] <= bounding_box[1]),
                          np.logical_and(bounding_box[2] <= towers[:, 1],
                                         towers[:, 1] <= bounding_box[3]))

in_box 函数使用 numpy 的 logical_and 方法来 return 布尔数组,表示来自塔的哪些坐标在边界框中。

# Generates a bounded vornoi diagram with finite regions in the bounding box
def bounded_voronoi(towers, bounding_box):
    # Select towers inside the bounding box
    i = in_box(towers, bounding_box)

    # Mirror points left, right, above, and under to provide finite regions for the
    # edge regions of the bounding box
    points_center = towers[i, :]

    points_left = np.copy(points_center)
    points_left[:, 0] = bounding_box[0] - (points_left[:, 0] - bounding_box[0])

    points_right = np.copy(points_center)
    points_right[:, 0] = bounding_box[1] + (bounding_box[1] - points_right[:, 0])

    points_down = np.copy(points_center)
    points_down[:, 1] = bounding_box[2] - (points_down[:, 1] - bounding_box[2])

    points_up = np.copy(points_center)
    points_up[:, 1] = bounding_box[3] + (bounding_box[3] - points_up[:, 1])

    points = np.append(points_center,
                       np.append(np.append(points_left,
                                           points_right,
                                           axis=0),
                                 np.append(points_down,
                                           points_up,
                                           axis=0),
                                 axis=0),
                       axis=0)

Flabetvvibes 对点进行镜像,以允许沿着边界框内边缘的区域是有限的。 Scipy 的 voronoi 方法 returns -1 用于未定义的顶点,因此镜像点允许边界框内的所有区域都是有限的,而所有无限区域都在边界框外的镜像区域中稍后将被丢弃的边界框。

# Compute Voronoi
vor = sp.spatial.Voronoi(points)

# creates a new attibute for points that form the diagram within the region
vor.filtered_points = points_center 
# grabs the first fifth of the regions, which are the original regions
vor.filtered_regions = np.array(vor.regions)[vor.point_region[:vor.npoints//5]]

return vor

bounded_voronoi 方法的最后一位调用 scipy 的 voronoi 函数并为边界框内的过滤点和区域添加新属性。 Energya 建议删除 Flabetvvibe 的代码,该代码手动找到边界框内的所有有限区域,其中一个衬里获得区域的前五分之一,这些区域是原始输入以及构成边界框的点。

def generate_CVD(points, iterations, bounding_box):
    p = copy.copy(points)

    for i in range(iterations):
        vor = bounded_voronoi(p, bounding_box)
        centroids = []

        for region in vor.filtered_regions:
            # grabs vertices for the region and adds a duplicate
            # of the first one to the end
            vertices = vor.vertices[region + [region[0]], :] 
            centroid = centroid_region(vertices)
            centroids.append(list(centroid[0, :]))

        p = np.array(centroids)

    return bounded_voronoi(p, bounding_box)

我采用了执行 loyd 算法迭代的 Flabetvvibe 代码,并将其形成为易于使用的方法。对于每次迭代,调用前一个 bounded_voronoi 函数,然后为每个单元找到质心,它们成为下一次迭代的新点集。 vertices = vor.vertices[region + [region[0]], :]简单地抓取当前区域的所有顶点,并将第一个顶点复制到最后,这样第一个和最后一个顶点在计算质心时是相同的。

感谢 Flabetvvibes 和 Energya。您的 posts/answers 教会了我如何比其文档更好地使用 scipy 的 voronoi 方法。我还将代码作为一个整体发布到任何其他寻找 copy/paste.

的人下面
import matplotlib.pyplot as pl
import numpy as np
import scipy as sp
import scipy.spatial
import sys
import copy

eps = sys.float_info.epsilon

# Returns a new np.array of towers that within the bounding_box
def in_box(towers, bounding_box):
    return np.logical_and(np.logical_and(bounding_box[0] <= towers[:, 0],
                                         towers[:, 0] <= bounding_box[1]),
                          np.logical_and(bounding_box[2] <= towers[:, 1],
                                         towers[:, 1] <= bounding_box[3]))


# Generates a bounded vornoi diagram with finite regions
def bounded_voronoi(towers, bounding_box):
    # Select towers inside the bounding box
    i = in_box(towers, bounding_box)

    # Mirror points left, right, above, and under to provide finite regions for the edge regions of the bounding box
    points_center = towers[i, :]

    points_left = np.copy(points_center)
    points_left[:, 0] = bounding_box[0] - (points_left[:, 0] - bounding_box[0])

    points_right = np.copy(points_center)
    points_right[:, 0] = bounding_box[1] + (bounding_box[1] - points_right[:, 0])

    points_down = np.copy(points_center)
    points_down[:, 1] = bounding_box[2] - (points_down[:, 1] - bounding_box[2])

    points_up = np.copy(points_center)
    points_up[:, 1] = bounding_box[3] + (bounding_box[3] - points_up[:, 1])

    points = np.append(points_center,
                       np.append(np.append(points_left,
                                           points_right,
                                           axis=0),
                                 np.append(points_down,
                                           points_up,
                                           axis=0),
                                 axis=0),
                       axis=0)

    # Compute Voronoi
    vor = sp.spatial.Voronoi(points)

    vor.filtered_points = points_center # creates a new attibute for points that form the diagram within the region
    vor.filtered_regions = np.array(vor.regions)[vor.point_region[:vor.npoints//5]] # grabs the first fifth of the regions, which are the original regions

    return vor


# Finds the centroid of a region. First and last point should be the same.
def centroid_region(vertices):
    # Polygon's signed area
    A = 0
    # Centroid's x
    C_x = 0
    # Centroid's y
    C_y = 0
    for i in range(0, len(vertices) - 1):
        s = (vertices[i, 0] * vertices[i + 1, 1] - vertices[i + 1, 0] * vertices[i, 1])
        A = A + s
        C_x = C_x + (vertices[i, 0] + vertices[i + 1, 0]) * s
        C_y = C_y + (vertices[i, 1] + vertices[i + 1, 1]) * s
    A = 0.5 * A
    C_x = (1.0 / (6.0 * A)) * C_x
    C_y = (1.0 / (6.0 * A)) * C_y
    return np.array([[C_x, C_y]])


# Performs x iterations of loyd's algorithm to calculate a centroidal vornoi diagram
def generate_CVD(points, iterations, bounding_box):
    p = copy.copy(points)

    for i in range(iterations):
        vor = bounded_voronoi(p, bounding_box)
        centroids = []

        for region in vor.filtered_regions:
            vertices = vor.vertices[region + [region[0]], :] # grabs vertices for the region and adds a duplicate of the first one to the end
            centroid = centroid_region(vertices)
            centroids.append(list(centroid[0, :]))

        p = np.array(centroids)

    return bounded_voronoi(p, bounding_box)


# returns a pyplot of given voronoi data
def plot_vornoi_diagram(vor, bounding_box, show_figure):
    # Initializes pyplot stuff
    fig = pl.figure()
    ax = fig.gca()

    # Plot initial points
    ax.plot(vor.filtered_points[:, 0], vor.filtered_points[:, 1], 'b.')

    # Plot ridges points
    for region in vor.filtered_regions:
        vertices = vor.vertices[region, :]
        ax.plot(vertices[:, 0], vertices[:, 1], 'go')

    # Plot ridges
    for region in vor.filtered_regions:
        vertices = vor.vertices[region + [region[0]], :]
        ax.plot(vertices[:, 0], vertices[:, 1], 'k-')

    # stores references to numbers for setting axes limits
    margin_percent = .1
    width = bounding_box[1]-bounding_box[0]
    height = bounding_box[3]-bounding_box[2]

    ax.set_xlim([bounding_box[0]-width*margin_percent, bounding_box[1]+width*margin_percent])
    ax.set_ylim([bounding_box[2]-height*margin_percent, bounding_box[3]+height*margin_percent])

    if show_figure:
        pl.show()
    return fig