TensorFlow 图像分类
TensorFlow image classification
我是 TensorFlow 的新手。我正在使用我自己的训练数据库进行图像分类。
但是,在我训练了自己的数据集之后,我不知道如何对输入图像进行分类。
这是我的代码,用于准备我自己的数据集
filenames = ['01.jpg', '02.jpg', '03.jpg', '04.jpg']
label = [0,1,1,1]
filename_queue = tf.train.string_input_producer(filenames)
reader = tf.WholeFileReader()
filename, content = reader.read(filename_queue)
image = tf.image.decode_jpeg(content, channels=3)
image = tf.cast(image, tf.float32)
resized_image = tf.image.resize_images(image, 224, 224)
image_batch , label_batch= tf.train.batch([resized_image,label], batch_size=8, num_threads = 3, capacity=5000)
这是训练数据集的正确代码吗?
之后,我尝试使用它来对输入图像进行分类,代码如下。
test = ['test.jpg', 'test2.jpg']
test_queue=tf.train.string_input_producer(test)
reader = tf.WholeFileReader()
testname, test_content = reader.read(test_queue)
test = tf.image.decode_jpeg(test_content, channels=3)
test = tf.cast(test, tf.float32)
resized_image = tf.image.resize_images(test, 224,224)
with tf.Session() as sess:
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
res = sess.run(resized_image)
coord.request_stop()
coord.join(threads)
但是,它不会 return 输入图像的预测标签。
我正在找人教我如何使用我自己的数据集对图像进行分类。
谢谢。
也许你可以在安装 PIL 后尝试这个 python lib:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import math
import numpy
import numpy as np
import random
from PIL import Image
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
# Basic model parameters as external flags.
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')
flags.DEFINE_integer('max_steps', 2000, 'Number of steps to run trainer.')
flags.DEFINE_integer('hidden1', 128, 'Number of units in hidden layer 1.')
flags.DEFINE_integer('hidden2', 32, 'Number of units in hidden layer 2.')
flags.DEFINE_integer('batch_size', 4, 'Batch size. '
'Must divide evenly into the dataset sizes.')
flags.DEFINE_string('train_dir', 'data', 'Directory to put the training data.')
flags.DEFINE_boolean('fake_data', False, 'If true, uses fake data '
'for unit testing.')
NUM_CLASSES = 2
IMAGE_SIZE = 28
CHANNELS = 3
IMAGE_PIXELS = IMAGE_SIZE * IMAGE_SIZE * CHANNELS
def inference(images, hidden1_units, hidden2_units):
# Hidden 1
with tf.name_scope('hidden1'):
weights = tf.Variable(
tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))),
name='weights')
biases = tf.Variable(tf.zeros([hidden1_units]),
name='biases')
hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases)
# Hidden 2
with tf.name_scope('hidden2'):
weights = tf.Variable(
tf.truncated_normal([hidden1_units, hidden2_units],
stddev=1.0 / math.sqrt(float(hidden1_units))),
name='weights')
biases = tf.Variable(tf.zeros([hidden2_units]),
name='biases')
hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
# Linear
with tf.name_scope('softmax_linear'):
weights = tf.Variable(
tf.truncated_normal([hidden2_units, NUM_CLASSES],
stddev=1.0 / math.sqrt(float(hidden2_units))),
name='weights')
biases = tf.Variable(tf.zeros([NUM_CLASSES]),
name='biases')
logits = tf.matmul(hidden2, weights) + biases
return logits
def cal_loss(logits, labels):
labels = tf.to_int64(labels)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits, labels, name='xentropy')
loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
return loss
def training(loss, learning_rate):
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)
return train_op
def evaluation(logits, labels):
correct = tf.nn.in_top_k(logits, labels, 1)
return tf.reduce_sum(tf.cast(correct, tf.int32))
def placeholder_inputs(batch_size):
images_placeholder = tf.placeholder(tf.float32, shape=(batch_size,IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))
return images_placeholder, labels_placeholder
def fill_feed_dict(images_feed,labels_feed, images_pl, labels_pl):
feed_dict = {
images_pl: images_feed,
labels_pl: labels_feed,
}
return feed_dict
def do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_set):
# And run one epoch of eval.
true_count = 0 # Counts the number of correct predictions.
steps_per_epoch = 4 // FLAGS.batch_size
num_examples = steps_per_epoch * FLAGS.batch_size
for step in xrange(steps_per_epoch):
feed_dict = fill_feed_dict(train_images,train_labels,
images_placeholder,
labels_placeholder)
true_count += sess.run(eval_correct, feed_dict=feed_dict)
precision = true_count / num_examples
print(' Num examples: %d Num correct: %d Precision @ 1: %0.04f' %
(num_examples, true_count, precision))
# Get the sets of images and labels for training, validation, and
train_images = []
for filename in ['01.jpg', '02.jpg', '03.jpg', '04.jpg']:
image = Image.open(filename)
image = image.resize((IMAGE_SIZE,IMAGE_SIZE))
train_images.append(np.array(image))
train_images = np.array(train_images)
train_images = train_images.reshape(4,IMAGE_PIXELS)
label = [0,1,1,1]
train_labels = np.array(label)
def run_training():
# Tell TensorFlow that the model will be built into the default Graph.
with tf.Graph().as_default():
# Generate placeholders for the images and labels.
images_placeholder, labels_placeholder = placeholder_inputs(4)
# Build a Graph that computes predictions from the inference model.
logits = inference(images_placeholder,
FLAGS.hidden1,
FLAGS.hidden2)
# Add to the Graph the Ops for loss calculation.
loss = cal_loss(logits, labels_placeholder)
# Add to the Graph the Ops that calculate and apply gradients.
train_op = training(loss, FLAGS.learning_rate)
# Add the Op to compare the logits to the labels during evaluation.
eval_correct = evaluation(logits, labels_placeholder)
# Create a saver for writing training checkpoints.
saver = tf.train.Saver()
# Create a session for running Ops on the Graph.
sess = tf.Session()
# Run the Op to initialize the variables.
init = tf.initialize_all_variables()
sess.run(init)
# And then after everything is built, start the training loop.
for step in xrange(FLAGS.max_steps):
start_time = time.time()
feed_dict = fill_feed_dict(train_images,train_labels,
images_placeholder,
labels_placeholder)
_, loss_value = sess.run([train_op, loss],
feed_dict=feed_dict)
duration = time.time() - start_time
if step % 100 == 0:
# Print status to stdout.
print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration))
if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps:
saver.save(sess, FLAGS.train_dir, global_step=step)
print('Training Data Eval:')
do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
train_images)
def main(_):
run_training()
if __name__ == '__main__':
tf.app.run()
我是 TensorFlow 的新手。我正在使用我自己的训练数据库进行图像分类。
但是,在我训练了自己的数据集之后,我不知道如何对输入图像进行分类。
这是我的代码,用于准备我自己的数据集
filenames = ['01.jpg', '02.jpg', '03.jpg', '04.jpg']
label = [0,1,1,1]
filename_queue = tf.train.string_input_producer(filenames)
reader = tf.WholeFileReader()
filename, content = reader.read(filename_queue)
image = tf.image.decode_jpeg(content, channels=3)
image = tf.cast(image, tf.float32)
resized_image = tf.image.resize_images(image, 224, 224)
image_batch , label_batch= tf.train.batch([resized_image,label], batch_size=8, num_threads = 3, capacity=5000)
这是训练数据集的正确代码吗?
之后,我尝试使用它来对输入图像进行分类,代码如下。
test = ['test.jpg', 'test2.jpg']
test_queue=tf.train.string_input_producer(test)
reader = tf.WholeFileReader()
testname, test_content = reader.read(test_queue)
test = tf.image.decode_jpeg(test_content, channels=3)
test = tf.cast(test, tf.float32)
resized_image = tf.image.resize_images(test, 224,224)
with tf.Session() as sess:
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
res = sess.run(resized_image)
coord.request_stop()
coord.join(threads)
但是,它不会 return 输入图像的预测标签。 我正在找人教我如何使用我自己的数据集对图像进行分类。
谢谢。
也许你可以在安装 PIL 后尝试这个 python lib:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import math
import numpy
import numpy as np
import random
from PIL import Image
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
# Basic model parameters as external flags.
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')
flags.DEFINE_integer('max_steps', 2000, 'Number of steps to run trainer.')
flags.DEFINE_integer('hidden1', 128, 'Number of units in hidden layer 1.')
flags.DEFINE_integer('hidden2', 32, 'Number of units in hidden layer 2.')
flags.DEFINE_integer('batch_size', 4, 'Batch size. '
'Must divide evenly into the dataset sizes.')
flags.DEFINE_string('train_dir', 'data', 'Directory to put the training data.')
flags.DEFINE_boolean('fake_data', False, 'If true, uses fake data '
'for unit testing.')
NUM_CLASSES = 2
IMAGE_SIZE = 28
CHANNELS = 3
IMAGE_PIXELS = IMAGE_SIZE * IMAGE_SIZE * CHANNELS
def inference(images, hidden1_units, hidden2_units):
# Hidden 1
with tf.name_scope('hidden1'):
weights = tf.Variable(
tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))),
name='weights')
biases = tf.Variable(tf.zeros([hidden1_units]),
name='biases')
hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases)
# Hidden 2
with tf.name_scope('hidden2'):
weights = tf.Variable(
tf.truncated_normal([hidden1_units, hidden2_units],
stddev=1.0 / math.sqrt(float(hidden1_units))),
name='weights')
biases = tf.Variable(tf.zeros([hidden2_units]),
name='biases')
hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
# Linear
with tf.name_scope('softmax_linear'):
weights = tf.Variable(
tf.truncated_normal([hidden2_units, NUM_CLASSES],
stddev=1.0 / math.sqrt(float(hidden2_units))),
name='weights')
biases = tf.Variable(tf.zeros([NUM_CLASSES]),
name='biases')
logits = tf.matmul(hidden2, weights) + biases
return logits
def cal_loss(logits, labels):
labels = tf.to_int64(labels)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits, labels, name='xentropy')
loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
return loss
def training(loss, learning_rate):
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)
return train_op
def evaluation(logits, labels):
correct = tf.nn.in_top_k(logits, labels, 1)
return tf.reduce_sum(tf.cast(correct, tf.int32))
def placeholder_inputs(batch_size):
images_placeholder = tf.placeholder(tf.float32, shape=(batch_size,IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))
return images_placeholder, labels_placeholder
def fill_feed_dict(images_feed,labels_feed, images_pl, labels_pl):
feed_dict = {
images_pl: images_feed,
labels_pl: labels_feed,
}
return feed_dict
def do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_set):
# And run one epoch of eval.
true_count = 0 # Counts the number of correct predictions.
steps_per_epoch = 4 // FLAGS.batch_size
num_examples = steps_per_epoch * FLAGS.batch_size
for step in xrange(steps_per_epoch):
feed_dict = fill_feed_dict(train_images,train_labels,
images_placeholder,
labels_placeholder)
true_count += sess.run(eval_correct, feed_dict=feed_dict)
precision = true_count / num_examples
print(' Num examples: %d Num correct: %d Precision @ 1: %0.04f' %
(num_examples, true_count, precision))
# Get the sets of images and labels for training, validation, and
train_images = []
for filename in ['01.jpg', '02.jpg', '03.jpg', '04.jpg']:
image = Image.open(filename)
image = image.resize((IMAGE_SIZE,IMAGE_SIZE))
train_images.append(np.array(image))
train_images = np.array(train_images)
train_images = train_images.reshape(4,IMAGE_PIXELS)
label = [0,1,1,1]
train_labels = np.array(label)
def run_training():
# Tell TensorFlow that the model will be built into the default Graph.
with tf.Graph().as_default():
# Generate placeholders for the images and labels.
images_placeholder, labels_placeholder = placeholder_inputs(4)
# Build a Graph that computes predictions from the inference model.
logits = inference(images_placeholder,
FLAGS.hidden1,
FLAGS.hidden2)
# Add to the Graph the Ops for loss calculation.
loss = cal_loss(logits, labels_placeholder)
# Add to the Graph the Ops that calculate and apply gradients.
train_op = training(loss, FLAGS.learning_rate)
# Add the Op to compare the logits to the labels during evaluation.
eval_correct = evaluation(logits, labels_placeholder)
# Create a saver for writing training checkpoints.
saver = tf.train.Saver()
# Create a session for running Ops on the Graph.
sess = tf.Session()
# Run the Op to initialize the variables.
init = tf.initialize_all_variables()
sess.run(init)
# And then after everything is built, start the training loop.
for step in xrange(FLAGS.max_steps):
start_time = time.time()
feed_dict = fill_feed_dict(train_images,train_labels,
images_placeholder,
labels_placeholder)
_, loss_value = sess.run([train_op, loss],
feed_dict=feed_dict)
duration = time.time() - start_time
if step % 100 == 0:
# Print status to stdout.
print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration))
if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps:
saver.save(sess, FLAGS.train_dir, global_step=step)
print('Training Data Eval:')
do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
train_images)
def main(_):
run_training()
if __name__ == '__main__':
tf.app.run()