CUDA_ERROR_ILLEGAL_ADDRESS 在 CUDA 内核中访问变量时

CUDA_ERROR_ILLEGAL_ADDRESS when accessing variables in CUDA kernel

我在尝试 运行 用于计算 Buddhabrot 分形轨道的内核时遇到 CUDA_ERROR_ILLEGAL_ADDRESS 异常。

extern "C"

__global__ void exec(int iterations, int size,
                float* inputR,  float* inputI, // Real/Imaginary input
                int* output                    // Output image in one dimension
                ) {

    int i = blockIdx.x * blockDim.x + threadIdx.x;

    float cR = inputR[i];
    float cI = inputI[i];

    float x = 0;
    float y = 0;

    float outX[1000];
    float outY[1000];

    for (int j = 0; j < iterations; j++) {
        outX[j] = x;
        outY[j] = y;

        float xNew = (x * x) - (y * y) + cR;
        float yNew = (2 * x * y) + cI;

        if (xNew * xNew + yNew * yNew > 4) {
            for (int k = 1; k < j; k++) {
                int curX = (outX[k] + 2 ) * size / 4;
                int curY = (outY[k] + 2 ) * size / 4;

                int idx = curX + size * curY;

                output[idx]++; // <- exception here
            }
            return;
        }

        x = xNew;
        y = yNew;
    }
}

我现在已经尝试了多种方法,错误似乎甚至不是源于数组,这与我最初的想法相反。例如,

output[0] = 0;

会很好用。但是,当我尝试调试 idx(记得我一开始以为错误与数组有关)时,我发现我不能像这样分配 idx

output[0] = idx;

也不在 printf 语句中使用它

if (i == 0) {
    printf("%d\n", idx);
}

我已经用 curXcurY 进行了相同的尝试,它们也拒绝工作,但是例如 cR 可以正常工作。最内层循环内分配的变量似乎有问题(我也无法分配k),所以我尝试在函数开始时在所有循环外声明idx,但是徒劳无功。还是一样的错误。

堆栈跟踪:

Exception in thread "main" jcuda.CudaException: CUDA_ERROR_ILLEGAL_ADDRESS
        at jcuda.driver.JCudaDriver.checkResult(JCudaDriver.java:330)
        at jcuda.driver.JCudaDriver.cuCtxSynchronize(JCudaDriver.java:1938)
        at fractal.Buddhabrot.<init>(Buddhabrot.java:96)
        at controller.Controller.<init>(Controller.java:10)
        at Main.main(Main.java:8)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:497)
        at com.intellij.rt.execution.application.AppMain.main(AppMain.java:144)

常数:

block size            512*1*1
grid size             64 *1*1
iterations            1000
size                  256
inputR, inputI length 64*512
output length         256*256

MCVE:

import jcuda.Pointer;
import jcuda.Sizeof;
import jcuda.driver.*;

import java.io.File;
import java.util.Random;

import static jcuda.driver.JCudaDriver.*;

public class Whosebug {
    public static final int SIZE = 256;
    public static final long NUM_POINTS = 128 * 128 * 128;
    public static final int ITERATIONS = 10000;

    public static final int BLOCK_SIZE = 512;
    public static final int SIM_THREADS = BLOCK_SIZE * 64;

    public static final Random random = new Random();

    public static void main(String[] args) {
        File ptxFile = new File("Buddha.ptx");

        setExceptionsEnabled(true);
        cuInit(0);

        CUdevice device = new CUdevice();
        cuDeviceGet(device, 0);

        CUcontext context = new CUcontext();
        cuCtxCreate(context, 0, device);

        CUmodule module = new CUmodule();
        cuModuleLoad(module, ptxFile.getAbsolutePath());

        CUfunction function = new CUfunction();
        cuModuleGetFunction(function, module, "exec");

        cuCtxSetLimit(CUlimit.CU_LIMIT_PRINTF_FIFO_SIZE, 4096);

        float[] inR = new float[SIM_THREADS];
        float[] inI = new float[SIM_THREADS];

        int[] out = new int[SIZE * SIZE];

        CUdeviceptr deviceInputR = new CUdeviceptr();
        cuMemAlloc(deviceInputR, inR.length * Sizeof.FLOAT);
        CUdeviceptr deviceInputI = new CUdeviceptr();
        cuMemAlloc(deviceInputI, inI.length * Sizeof.FLOAT);

        CUdeviceptr deviceOutput = new CUdeviceptr();
        cuMemAlloc(deviceOutput, out.length * Sizeof.INT);

        for (long i = 0; i < NUM_POINTS; i += SIM_THREADS) {
            for (int j = 0; j < SIM_THREADS; j++) {
                inR[j] = random.nextFloat() * 4f - 2f;
                inI[j] = random.nextFloat() * 4f - 2f;
            }

            System.out.println("GPU START");

            cuMemcpyHtoD(deviceInputR, Pointer.to(inR), inR.length * Sizeof.FLOAT);
            cuMemcpyHtoD(deviceInputI, Pointer.to(inI), inI.length * Sizeof.FLOAT);

            Pointer kernelParameters = Pointer.to(
                    Pointer.to(new int[]{ITERATIONS}),
                    Pointer.to(new int[]{SIZE}),
                    Pointer.to(deviceInputR),
                    Pointer.to(deviceInputI),
                    Pointer.to(deviceOutput)
            );

            int gridSize = (int) Math.ceil(((double) SIM_THREADS) / BLOCK_SIZE);

            cuLaunchKernel(function,
                    gridSize, 1, 1,
                    BLOCK_SIZE, 1, 1,
                    0, null,
                    kernelParameters, null
            );

            cuCtxSynchronize();

            System.out.println("GPU END");
        }

        cuMemcpyDtoH(Pointer.to(out), deviceOutput, out.length * Sizeof.INT);
    }
}

在您的 "constants" 部分中,您指出了这一点:

iterations            1000

但是在您的 java 代码中(在您提供 MCVE 之后)您有这个:

public static final int ITERATIONS = 10000;

这显然会导致您的这部分内核代码中断:

float outX[1000];
float outY[1000];

for (int j = 0; j < iterations; j++) {
    outX[j] = x;
    outY[j] = y;

因为 iterations 的 10000 超出了索引范围。 (此循环的范围实际上取决于数据,但对于某些数据输入模式,循环将遍历超过 1000,如所写)。

当我改变这个时:

public static final int ITERATIONS = 10000;

对此:

public static final int ITERATIONS = 1000;

你的代码对我来说正确运行:

$ cuda-memcheck java -cp ".:jcuda-0.7.5b.jar" so1
========= CUDA-MEMCHECK
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
GPU START
GPU END
========= ERROR SUMMARY: 0 errors
$