如何并行化 Spark scala 计算?

How to parallelize Spark scala computation?

我有代码在聚类后计算误差平方和内,我主要从 Spark mllib 源代码中获取。

当我 运行 使用 spark API 的类似代码时,它 运行 在许多不同的(分布式)作业中 运行 成功。当我 运行 它是我的代码(它应该做与 Spark 代码相同的事情)时,我得到一个堆栈溢出错误。有什么想法吗?

代码如下:

import java.util.Arrays
        import org.apache.spark.mllib.linalg.{Vectors, Vector}
        import org.apache.spark.mllib.linalg._
        import org.apache.spark.mllib.linalg.distributed.RowMatrix
        import org.apache.spark.rdd.RDD
        import org.apache.spark.api.java.JavaRDD
        import breeze.linalg.{axpy => brzAxpy, inv, svd => brzSvd, DenseMatrix => BDM, DenseVector => BDV,
          MatrixSingularException, SparseVector => BSV, CSCMatrix => BSM, Matrix => BM}

        val EPSILON = {
            var eps = 1.0
            while ((1.0 + (eps / 2.0)) != 1.0) {
              eps /= 2.0
            }
            eps
          }

        def dot(x: Vector, y: Vector): Double = {
            require(x.size == y.size,
              "BLAS.dot(x: Vector, y:Vector) was given Vectors with non-matching sizes:" +
              " x.size = " + x.size + ", y.size = " + y.size)
            (x, y) match {
              case (dx: DenseVector, dy: DenseVector) =>
                dot(dx, dy)
              case (sx: SparseVector, dy: DenseVector) =>
                dot(sx, dy)
              case (dx: DenseVector, sy: SparseVector) =>
                dot(sy, dx)
              case (sx: SparseVector, sy: SparseVector) =>
                dot(sx, sy)
              case _ =>
                throw new IllegalArgumentException(s"dot doesn't support (${x.getClass}, ${y.getClass}).")
            }
         }

         def fastSquaredDistance(
              v1: Vector,
              norm1: Double,
              v2: Vector,
              norm2: Double,
              precision: Double = 1e-6): Double = {
            val n = v1.size
            require(v2.size == n)
            require(norm1 >= 0.0 && norm2 >= 0.0)
            val sumSquaredNorm = norm1 * norm1 + norm2 * norm2
            val normDiff = norm1 - norm2
            var sqDist = 0.0
            /*
             * The relative error is
             * <pre>
             * EPSILON * ( \|a\|_2^2 + \|b\_2^2 + 2 |a^T b|) / ( \|a - b\|_2^2 ),
             * </pre>
             * which is bounded by
             * <pre>
             * 2.0 * EPSILON * ( \|a\|_2^2 + \|b\|_2^2 ) / ( (\|a\|_2 - \|b\|_2)^2 ).
             * </pre>
             * The bound doesn't need the inner product, so we can use it as a sufficient condition to
             * check quickly whether the inner product approach is accurate.
             */
            val precisionBound1 = 2.0 * EPSILON * sumSquaredNorm / (normDiff * normDiff + EPSILON)
            if (precisionBound1 < precision) {
              sqDist = sumSquaredNorm - 2.0 * dot(v1, v2)
            } else if (v1.isInstanceOf[SparseVector] || v2.isInstanceOf[SparseVector]) {
              val dotValue = dot(v1, v2)
              sqDist = math.max(sumSquaredNorm - 2.0 * dotValue, 0.0)
              val precisionBound2 = EPSILON * (sumSquaredNorm + 2.0 * math.abs(dotValue)) /
                (sqDist + EPSILON)
              if (precisionBound2 > precision) {
                sqDist = Vectors.sqdist(v1, v2)
              }
            } else {
              sqDist = Vectors.sqdist(v1, v2)
            }
            sqDist
        }

        def findClosest(
              centers: TraversableOnce[Vector],
              point: Vector): (Int, Double) = {
            var bestDistance = Double.PositiveInfinity
            var bestIndex = 0
            var i = 0
            centers.foreach { center =>
              // Since `\|a - b\| \geq |\|a\| - \|b\||`, we can use this lower bound to avoid unnecessary
              // distance computation.
              var lowerBoundOfSqDist = Vectors.norm(center, 2.0) - Vectors.norm(point, 2.0)
              lowerBoundOfSqDist = lowerBoundOfSqDist * lowerBoundOfSqDist
              if (lowerBoundOfSqDist < bestDistance) {
                val distance: Double = fastSquaredDistance(center, Vectors.norm(center, 2.0), point, Vectors.norm(point, 2.0))
                if (distance < bestDistance) {
                  bestDistance = distance
                  bestIndex = i
                }
              }
              i += 1
            }
            (bestIndex, bestDistance)
        }

         def pointCost(
              centers: TraversableOnce[Vector],
              point: Vector): Double =
            findClosest(centers, point)._2



        def clusterCentersIter: Iterable[Vector] =
            clusterCenters.map(p => p)


        def computeCostZep(indata: RDD[Vector]): Double = {
            val bcCenters = indata.context.broadcast(clusterCenters)
            indata.map(p => pointCost(bcCenters.value, p)).sum()
          }

        computeCostZep(projectedData)

我相信我正在使用与 spark 相同的所有并行化作业,但它对我不起作用。关于使我的代码 distributed/helping 了解为什么我的代码中发生内存溢出的任何建议都会非常有帮助

这里是一个link spark 中的源代码,非常相似: KMeansModel and KMeans

这是 运行 的代码:

val clusters = KMeans.train(projectedData, numClusters, numIterations)

val clusterCenters = clusters.clusterCenters




// Evaluate clustering by computing Within Set Sum of Squared Errors
val WSSSE = clusters.computeCost(projectedData)
println("Within Set Sum of Squared Errors = " + WSSSE)

这是错误输出:

org.apache.spark.SparkException:作业因阶段失败而中止:阶段 94.0 中的任务 1 失败 4 次,最近的失败:阶段 94.0 中的任务 1.3 丢失(TID 37663,ip-172-31-13-209 .ec2.internal): java.lang.WhosebugError 在 $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$$$ $$c57ec8bf9b0d5f6161b97741d596ff0$$$$wC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC $$iwC$$iwC.dot(:226) 在 $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$$ $$$c57ec8bf9b0d5f6161b97741d596ff0$$$$wC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$万国表$$万国表$$iwC.dot(:226) ...

以后往下:

驱动程序堆栈跟踪:在 org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431) 在 org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419) 在 org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418) 在 scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) 在 scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) 在 org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418) 在 org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed $1.apply(DAGScheduler.scala:799) 在 org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799) 在 scala.Option.foreach(Option.scala:236) 在 org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799) 在 org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640) 在 org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive (DAGScheduler.scala:1599) 在 org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588) 在 org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48 ) 在 org.apache.spark.scheduler.DAGScheduler.运行Job(DAGScheduler.scala:620) 在 org.apache.spark.SparkContext.runJob(SparkContext.scala:1832) 在 org.apache.spark.SparkContext.runJob(SparkContext.scala :1952) 在 org.apache.spark.rdd.RDD$$anonfun$fold$1.apply(RDD.scala:1088) 在 org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) 在 org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111) 在 org.apache.spark.rdd.RDD.withScope(RDD.scala:316) 在 org.apache.spark.rdd.RDD.fold(RDD.scala:1082 ) 在 org.apache.spark.rdd.DoubleRDDFunctions$$anonfun$sum$1.apply$mcD$sp(DoubleRDDFunctions.scala:34) 在 org.apache.spark.rdd.DoubleRDDFunctions$$anonf un$sum$1.apply(DoubleRDDFunctions.scala:34) 在 org.apache.spark.rdd.DoubleRDDFunctions$$anonfun$sum$1.apply(DoubleRDDFunctions.scala:34) 在 org.apache.spark.rdd.RDD OperationScope$.withScope(RDDOperationScope.scala:150) 在 org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111) 在 org.apache.spark.rdd.RDD.withScope(RDD.scala:316) 在org.apache.spark.rdd.DoubleRDDFunctions.sum(DoubleRDDFunctions.scala:33)

发生的事情似乎很简单:您在这里递归调用 dot 方法:

def dot(x: Vector, y: Vector): Double = {
        require(x.size == y.size,
          "BLAS.dot(x: Vector, y:Vector) was given Vectors with non-matching sizes:" +
          " x.size = " + x.size + ", y.size = " + y.size)
        (x, y) match {
          case (dx: DenseVector, dy: DenseVector) =>
            dot(dx, dy)
          case (sx: SparseVector, dy: DenseVector) =>
            dot(sx, dy)
          case (dx: DenseVector, sy: SparseVector) =>
            dot(sy, dx)
          case (sx: SparseVector, sy: SparseVector) =>
            dot(sx, sy)
          case _ =>
            throw new IllegalArgumentException(s"dot doesn't support (${x.getClass}, ${y.getClass}).")
        }
     }

dot 的后续递归调用与前者 相同 参数 - 因此递归永远不会有结论。

堆栈跟踪也告诉您 - 注意位置在 方法:

java.lang.WhosebugError 在 $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$$$$$c57ec8bf9b0d5f6161b97741d596ff0 $$$$wC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC $$iwC.dot(:226) 在