cudnn 在 TensorFlow 中编译配置
cudnn compile configuration in TensorFlow
Ubuntu 14.04,CUDA 版本 7.5.18,tensorflow 的夜间构建
在 tensorflow 中 运行 进行 tf.nn.max_pool()
操作时,出现以下错误:
E tensorflow/stream_executor/cuda/cuda_dnn.cc:286] Loaded cudnn
library: 5005 but source was compiled against 4007. If using a binary
install, upgrade your cudnn library to match. If building from
sources, make sure the library loaded matches the version you
specified during compile configuration.
W tensorflow/stream_executor/stream.cc:577] attempting to perform DNN
operation using StreamExecutor without DNN support
Traceback (most recent call last):
...
如何在tensorflow的编译配置中指定我的cudnn版本?
进入TensorFlow源代码目录,然后执行配置文件:/.configure
.
这是来自 TensorFlow documentation 的示例:
$ ./configure
Please specify the location of python. [Default is /usr/bin/python]:
Do you wish to build TensorFlow with GPU support? [y/N] y
GPU support will be enabled for TensorFlow
Please specify which gcc nvcc should use as the host compiler. [Default is
/usr/bin/gcc]: /usr/bin/gcc-4.9
Please specify the Cuda SDK version you want to use, e.g. 7.0. [Leave
empty to use system default]: 7.5
Please specify the location where CUDA 7.5 toolkit is installed. Refer to
README.md for more details. [default is: /usr/local/cuda]: /usr/local/cuda
Please specify the Cudnn version you want to use. [Leave empty to use system
default]: 4.0.4
Please specify the location where the cuDNN 4.0.4 library is installed. Refer to
README.md for more details. [default is: /usr/local/cuda]: /usr/local/cudnn-r4-rc/
Please specify a list of comma-separated Cuda compute capabilities you want to
build with. You can find the compute capability of your device at:
https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases your
build time and binary size. [Default is: \"3.5,5.2\"]: 3.5
Setting up Cuda include
Setting up Cuda lib64
Setting up Cuda bin
Setting up Cuda nvvm
Setting up CUPTI include
Setting up CUPTI lib64
Configuration finished
您似乎已经安装了 cudnn 5。 运行 ./configure
时需要设置
Please specify the Cudnn version you want to use. [Leave empty to use system
default]: 5
添加我的 2 美分:在我的情况下(TF0.12.1,从 pip
安装到 anaconda,没有 sudo
权限)安装了 CuDNNv5,但不是默认设置。
设置export LD_LIBRARY_PATH="/usr/local/lib/cuda-8.0/lib64:/usr/local/lib/cudann5/lib64/"
解决了问题
我也遇到这样的不兼容问题:
Loaded runtime CuDNN library: 5005 (compatibility version 5000) but source wascompiled with 5110 (compatibility version 5100). If using a binary install, upgrade your CuDNNlibrary to match. If building fromsources, make sure the library loaded at runtime matches a compatible versionspecified during compile configuration.
所以我下载了 CuDNN 5.1(兼容 CUDA8.0)并用它替换了 5.0 然后一切顺利。
警告:来自 nvidia 的 CuDNN 不可用,但您可以从其他人的分享中找到它。
Ubuntu 14.04,CUDA 版本 7.5.18,tensorflow 的夜间构建
在 tensorflow 中 运行 进行 tf.nn.max_pool()
操作时,出现以下错误:
E tensorflow/stream_executor/cuda/cuda_dnn.cc:286] Loaded cudnn library: 5005 but source was compiled against 4007. If using a binary install, upgrade your cudnn library to match. If building from sources, make sure the library loaded matches the version you specified during compile configuration.
W tensorflow/stream_executor/stream.cc:577] attempting to perform DNN operation using StreamExecutor without DNN support
Traceback (most recent call last):
...
如何在tensorflow的编译配置中指定我的cudnn版本?
进入TensorFlow源代码目录,然后执行配置文件:/.configure
.
这是来自 TensorFlow documentation 的示例:
$ ./configure
Please specify the location of python. [Default is /usr/bin/python]:
Do you wish to build TensorFlow with GPU support? [y/N] y
GPU support will be enabled for TensorFlow
Please specify which gcc nvcc should use as the host compiler. [Default is
/usr/bin/gcc]: /usr/bin/gcc-4.9
Please specify the Cuda SDK version you want to use, e.g. 7.0. [Leave
empty to use system default]: 7.5
Please specify the location where CUDA 7.5 toolkit is installed. Refer to
README.md for more details. [default is: /usr/local/cuda]: /usr/local/cuda
Please specify the Cudnn version you want to use. [Leave empty to use system
default]: 4.0.4
Please specify the location where the cuDNN 4.0.4 library is installed. Refer to
README.md for more details. [default is: /usr/local/cuda]: /usr/local/cudnn-r4-rc/
Please specify a list of comma-separated Cuda compute capabilities you want to
build with. You can find the compute capability of your device at:
https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases your
build time and binary size. [Default is: \"3.5,5.2\"]: 3.5
Setting up Cuda include
Setting up Cuda lib64
Setting up Cuda bin
Setting up Cuda nvvm
Setting up CUPTI include
Setting up CUPTI lib64
Configuration finished
您似乎已经安装了 cudnn 5。 运行 ./configure
Please specify the Cudnn version you want to use. [Leave empty to use system
default]: 5
添加我的 2 美分:在我的情况下(TF0.12.1,从 pip
安装到 anaconda,没有 sudo
权限)安装了 CuDNNv5,但不是默认设置。
设置export LD_LIBRARY_PATH="/usr/local/lib/cuda-8.0/lib64:/usr/local/lib/cudann5/lib64/"
解决了问题
我也遇到这样的不兼容问题:
Loaded runtime CuDNN library: 5005 (compatibility version 5000) but source wascompiled with 5110 (compatibility version 5100). If using a binary install, upgrade your CuDNNlibrary to match. If building fromsources, make sure the library loaded at runtime matches a compatible versionspecified during compile configuration.
所以我下载了 CuDNN 5.1(兼容 CUDA8.0)并用它替换了 5.0 然后一切顺利。
警告:来自 nvidia 的 CuDNN 不可用,但您可以从其他人的分享中找到它。