Tensorflow LSTM 逐像素分类
Tensorflow LSTM pixel-wise classification
如何对 LSTM 网络进行逐像素分类?具体来说,在 Tensorflow 中。
我的直觉告诉我输出张量(来自代码的pred
&y
)应该是一个与输入图像具有相同分辨率的二维张量。换句话说,输入图像为 200x200,输出分类为 200x200。
Udacity 课程包括一个示例 LSTM 网络,其中输入图像为 28x28。然而它是一个图像(作为一个整体——手写MNIST数据集)分类网络。
我的想法是,我可以用 [n_input][n_steps]
替换所有尺寸为 [n_classes]
的张量(代码如下)。但是它在矩阵乘法时抛出错误。
Udacity 示例代码部分如下所示:
n_input = 28 # MNIST data input (img shape: 28*28)
n_steps = 28 # timesteps
n_hidden = 128 # hidden layer num of features
n_classes = 10 # MNIST total classes (0-9 digits)
# tf Graph input
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_classes])
# Define weights
weights = {
'hidden': tf.Variable(tf.random_normal([n_input, n_hidden])),
'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
}
biases = {
'hidden': tf.Variable(tf.random_normal([n_hidden])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
def RNN(x, weights, biases):
# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, n_steps, n_input)
# Permuting batch_size and n_steps
x = tf.transpose(x, [1, 0, 2])
# Reshaping to (n_steps*batch_size, n_input)
x = tf.reshape(x, [-1, n_input])
# Split to get a list of 'n_steps' tensors of shape (batch_size, n_hidden)
# This input shape is required by `rnn` function
x = tf.split(0, n_steps, x)
# Define a lstm cell with tensorflow
lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
pdb.set_trace()
# Get lstm cell output
outputs, states = rnn.rnn(lstm_cell, x, dtype=tf.float32)
# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights['out']) + biases['out']
pred = RNN(x, weights, biases)
-------------------------------------------- ------------------------------
然后我的代码如下所示:
n_input = 200 # data data input (img shape: 28*28)
n_steps = 200 # timesteps
n_hidden = 128 # hidden layer num of features
n_classes = 2 # data total classes (0-9 digits)
# tf Graph input
x = tf.placeholder("float", [None, n_input, n_steps])
y = tf.placeholder("float", [None, n_input, n_steps])
# Define weights
weights = {
'hidden': tf.Variable(tf.random_normal([n_input, n_hidden]), dtype="float32"),
'out': tf.Variable(tf.random_normal([n_hidden, n_input, n_steps]), dtype="float32")
}
biases = {
'hidden': tf.Variable(tf.random_normal([n_hidden]), dtype="float32"),
'out': tf.Variable(tf.random_normal([n_input, n_steps]), dtype="float32")
}
def RNN(x, weights, biases):
# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, n_steps, n_input)
# Permuting batch_size and n_steps
pdb.set_trace()
x = tf.transpose(x, [1, 0, 2])
# Reshaping to (n_steps*batch_size, n_input)
x = tf.reshape(x, [-1, n_input])
# Split to get a list of 'n_steps' tensors of shape (batch_size, n_hidden)
# This input shape is required by `rnn` function
x = tf.split(0, n_steps, x)
# Define a lstm cell with tensorflow
lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
pdb.set_trace()
# Get lstm cell output
outputs, states = rnn.rnn(lstm_cell, x, dtype=tf.float32)
# Linear activation, using rnn inner loop last output
# return tf.matmul(outputs[-1], weights['out']) + biases['out']
return tf.batch_matmul(outputs[-1], weights['out']) + biases['out']
pred = RNN(x, weights, biases)
第return tf.batch_matmul(outputs[-1], weights['out']) + biases['out']
行就是问题所在。因为 outputs
是 2D 张量的向量而 weights['out']
是 3D 张量的向量。
我想也许我可以更改 outputs
的维度,但这需要深入研究 RNN 对象(在 API 中)。
我在这里有哪些选择?我可以做一些重塑吗?如果是这样,我应该重塑什么,以什么方式重塑?
您不能对 3 维形状 [n_hidden, n_input, n_step]
的矩阵进行矩阵乘法。
您可以做的是输出一个维度为 [batch_size, n_input * n_step]
的向量,然后将其重新整形为 [batch_size, n_input, n_step]
.
weights = {
'hidden': ... ,
'out': tf.Variable(tf.random_normal([n_hidden, n_input * n_steps]), dtype="float32")
}
biases = {
'hidden': ... ,
'out': tf.Variable(tf.random_normal([n_input * n_steps]), dtype="float32")
}
# ...
pred = RNN(x, weights, biases)
pred = tf.reshape(pred, [-1, n_input, n_steps])
在您的模型上
但是,您在这里所做的是对图像的每一列进行 RNN。您正在尝试获取图像的每个切片(总共 200 个)并对其进行迭代,这根本不会产生好的结果。
如果你想在图像上工作,我建议你看看this tutorial来自TensorFlow,在那里你可以学习使用卷积,比RNN更有效在图片上。
如何对 LSTM 网络进行逐像素分类?具体来说,在 Tensorflow 中。
我的直觉告诉我输出张量(来自代码的pred
&y
)应该是一个与输入图像具有相同分辨率的二维张量。换句话说,输入图像为 200x200,输出分类为 200x200。
Udacity 课程包括一个示例 LSTM 网络,其中输入图像为 28x28。然而它是一个图像(作为一个整体——手写MNIST数据集)分类网络。
我的想法是,我可以用 [n_input][n_steps]
替换所有尺寸为 [n_classes]
的张量(代码如下)。但是它在矩阵乘法时抛出错误。
Udacity 示例代码部分如下所示:
n_input = 28 # MNIST data input (img shape: 28*28)
n_steps = 28 # timesteps
n_hidden = 128 # hidden layer num of features
n_classes = 10 # MNIST total classes (0-9 digits)
# tf Graph input
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_classes])
# Define weights
weights = {
'hidden': tf.Variable(tf.random_normal([n_input, n_hidden])),
'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
}
biases = {
'hidden': tf.Variable(tf.random_normal([n_hidden])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
def RNN(x, weights, biases):
# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, n_steps, n_input)
# Permuting batch_size and n_steps
x = tf.transpose(x, [1, 0, 2])
# Reshaping to (n_steps*batch_size, n_input)
x = tf.reshape(x, [-1, n_input])
# Split to get a list of 'n_steps' tensors of shape (batch_size, n_hidden)
# This input shape is required by `rnn` function
x = tf.split(0, n_steps, x)
# Define a lstm cell with tensorflow
lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
pdb.set_trace()
# Get lstm cell output
outputs, states = rnn.rnn(lstm_cell, x, dtype=tf.float32)
# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights['out']) + biases['out']
pred = RNN(x, weights, biases)
-------------------------------------------- ------------------------------
然后我的代码如下所示:
n_input = 200 # data data input (img shape: 28*28)
n_steps = 200 # timesteps
n_hidden = 128 # hidden layer num of features
n_classes = 2 # data total classes (0-9 digits)
# tf Graph input
x = tf.placeholder("float", [None, n_input, n_steps])
y = tf.placeholder("float", [None, n_input, n_steps])
# Define weights
weights = {
'hidden': tf.Variable(tf.random_normal([n_input, n_hidden]), dtype="float32"),
'out': tf.Variable(tf.random_normal([n_hidden, n_input, n_steps]), dtype="float32")
}
biases = {
'hidden': tf.Variable(tf.random_normal([n_hidden]), dtype="float32"),
'out': tf.Variable(tf.random_normal([n_input, n_steps]), dtype="float32")
}
def RNN(x, weights, biases):
# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, n_steps, n_input)
# Permuting batch_size and n_steps
pdb.set_trace()
x = tf.transpose(x, [1, 0, 2])
# Reshaping to (n_steps*batch_size, n_input)
x = tf.reshape(x, [-1, n_input])
# Split to get a list of 'n_steps' tensors of shape (batch_size, n_hidden)
# This input shape is required by `rnn` function
x = tf.split(0, n_steps, x)
# Define a lstm cell with tensorflow
lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
pdb.set_trace()
# Get lstm cell output
outputs, states = rnn.rnn(lstm_cell, x, dtype=tf.float32)
# Linear activation, using rnn inner loop last output
# return tf.matmul(outputs[-1], weights['out']) + biases['out']
return tf.batch_matmul(outputs[-1], weights['out']) + biases['out']
pred = RNN(x, weights, biases)
第return tf.batch_matmul(outputs[-1], weights['out']) + biases['out']
行就是问题所在。因为 outputs
是 2D 张量的向量而 weights['out']
是 3D 张量的向量。
我想也许我可以更改 outputs
的维度,但这需要深入研究 RNN 对象(在 API 中)。
我在这里有哪些选择?我可以做一些重塑吗?如果是这样,我应该重塑什么,以什么方式重塑?
您不能对 3 维形状 [n_hidden, n_input, n_step]
的矩阵进行矩阵乘法。
您可以做的是输出一个维度为 [batch_size, n_input * n_step]
的向量,然后将其重新整形为 [batch_size, n_input, n_step]
.
weights = {
'hidden': ... ,
'out': tf.Variable(tf.random_normal([n_hidden, n_input * n_steps]), dtype="float32")
}
biases = {
'hidden': ... ,
'out': tf.Variable(tf.random_normal([n_input * n_steps]), dtype="float32")
}
# ...
pred = RNN(x, weights, biases)
pred = tf.reshape(pred, [-1, n_input, n_steps])
在您的模型上
但是,您在这里所做的是对图像的每一列进行 RNN。您正在尝试获取图像的每个切片(总共 200 个)并对其进行迭代,这根本不会产生好的结果。
如果你想在图像上工作,我建议你看看this tutorial来自TensorFlow,在那里你可以学习使用卷积,比RNN更有效在图片上。