二维 PCA 线拟合与 numpy

2D PCA line fitting with numpy

我正在尝试使用 numpy 实现 2D PCA。 代码很简单:

import numpy as np

n=10
d=10
x=np.linspace(0,10,n)
y=x*d

covmat = np.cov([x,y])
print(covmat)

eig_values, eig_vecs = np.linalg.eig(covmat)
largest_index = np.argmax(eig_values)
largest_eig_vec = eig_vecs[largest_index]

协方差矩阵为:

[[   11.31687243   113.16872428]
 [  113.16872428  1131.6872428 ]]

然后我得到了一个简单的帮助方法,可以在给定的中心沿给定的方向绘制一条线(作为一系列点)。 这是供 pyplot 使用的,因此我正在为 x 和 y 坐标准备单独的列表。

def plot_line(center, dir, num_steps, step_size):
    line_x = []
    line_y = []
    for i in range(num_steps):
        dist_from_center = step_size * (i - num_steps / 2)
        point_on_line = center + dist_from_center * dir
        line_x.append(point_on_line[0])
        line_y.append(point_on_line[1])
    return (line_x, line_y)

最后是剧情设置:

lines = []
mean_point=np.array([np.mean(x),np.mean(y)])
lines.append(plot_line(mean_point, largest_eig_vec, 200, 0.5))

import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(111)

ax.scatter(x,y, c="b", marker=".", s=10
           )
for line in lines:
    ax.plot(line[0], line[1], c="r")

ax.scatter(mean_point[0], mean_point[1], c="y", marker="o", s=20)

plt.axes().set_aspect('equal', 'datalim')
plt.show()

不幸的是,PCA 似乎不起作用。 情节如下:

恐怕我不知道出了什么问题。

最后的图表明,pca 拟合的线是正确的结果,只是它在 y 轴上镜像。

事实上,如果我改变特征向量的 x 坐标,直线就完美拟合了:

显然这是一个基本问题。不知何故,我误解了如何使用 pca。

我的错误在哪里? 在线资源似乎完全按照我实施的方式描述了 PCA。 我不相信我必须在 y 轴上明确地反映我的线拟合。它必须是别的东西。

你的错误在于你提取了特征向量数组的最后 。但是特征向量构成 np.linalg.eig 返回的特征向量数组的 ,而不是行。来自 documentation:

[...] the arrays a, w, and v satisfy the equations dot(a[:,:], v[:,i]) = w[i] * v[:,i] [for each i]

其中 a 是应用了 np.linalg.eig 的数组,w 是特征值的一维数组,而 v 是特征向量的二维数组。所以列 v[:, i] 是特征向量。

在这个简单的二维情况下,由于两个特征向量相互正交(因为我们从对称矩阵开始)和单位长度(因为 np.linalg.eig 以这种方式对它们进行归一化),特征向量数组有两种形式之一

[[ cos(t)  sin(t)]
 [-sin(t)  cos(t)]]

[[ cos(t)  sin(t)]
 [ sin(t) -cos(t)]]

对于某些实数 t,在第一种情况下,读取第一行(例如)而不是第一列将得到 [cos(t), sin(t)] 代替 [cos(t), -sin(t)]。这解释了您看到的明显反射。

替换行

largest_eig_vec = eig_vecs[largest_index]

largest_eig_vec = eig_vecs[:, largest_index]

你应该会得到预期的结果。