R - describe() 输出到数据框

R - describe() output to a data frame

我想使用 describe() 函数创建数据框。正在考虑的数据集是鸢尾花。数据框应如下所示:

    Variable    n   missing unique  Info    Mean    0.05    0.1   0.25  0.5    0.75 0.9   0.95
   Sepal.Length 150    0    35      1       5.843   4.6     4.8   5.1   5.8    6.4  6.9   7.255
   Sepal.Width  150    0    23      0.99    3.057   2.345   2.5   2.8   3      3.3  3.61  3.8
Petal.Length    150    0    43      1       3.758   1.3     1.4   1.6   4.35   5.1  5.8   6.1
 Petal.Width    150    0    22      0.99    1.199   0.2     0.2   0.3   1.3    1.8  2.2   2.3
     Species    150    0    3                                   

有没有办法将 describe() 的输出强制为 data.frame 类型?当我尝试强制时,出现如下所示的错误:

library(Hmisc)
statistics <- describe(iris)
statistics[1]
first_vec <- statistics[1]$Sepal.Length
as.data.frame(first_vec)
#Error in as.data.frame.default(first_vec) : cannot coerce class ""describe"" to a data.frame

谢谢

解决这个问题的方法是用 str() 检查对象:

data(iris)
library(Hmisc)
di <- describe(iris)
di
# iris 
# 
# 5  Variables      150  Observations
# -------------------------------------------------------------
# Sepal.Length 
#       n missing  unique    Info    Mean     .05     .10     .25     .50     .75     .90     .95 
#     150       0      35       1   5.843   4.600   4.800   5.100   5.800   6.400   6.900   7.255
# 
# lowest : 4.3 4.4 4.5 4.6 4.7, highest: 7.3 7.4 7.6 7.7 7.9 
# -------------------------------------------------------------
# ...
# -------------------------------------------------------------
# Species 
#       n missing  unique 
#     150       0       3 
# 
# setosa (50, 33%), versicolor (50, 33%) 
# virginica (50, 33%) 
# -------------------------------------------------------------
str(di)
# List of 5
# $ Sepal.Length:List of 6
# ..$ descript    : chr "Sepal.Length"
# ..$ units       : NULL
# ..$ format      : NULL
# ..$ counts      : Named chr [1:12] "150" "0" "35" "1" ...
# .. ..- attr(*, "names")= chr [1:12] "n" "missing" "unique" "Info" ...
# ..$ intervalFreq:List of 2
# .. ..$ range: atomic [1:2] 4.3 7.9
# .. .. ..- attr(*, "Csingle")= logi TRUE
# .. ..$ count: int [1:100] 1 0 3 0 0 1 0 0 4 0 ...
# ..$ values      : Named chr [1:10] "4.3" "4.4" "4.5" "4.6" ...
# .. ..- attr(*, "names")= chr [1:10] "L1" "L2" "L3" "L4" ...
# ..- attr(*, "class")= chr "describe"
# $ Sepal.Width :List of 6
# ...
# $ Species     :List of 5
# ..$ descript: chr "Species"
# ..$ units   : NULL
# ..$ format  : NULL
# ..$ counts  : Named num [1:3] 150 0 3
# .. ..- attr(*, "names")= chr [1:3] "n" "missing" "unique"
# ..$ values  : num [1:2, 1:3] 50 33 50 33 50 33
# .. ..- attr(*, "dimnames")=List of 2
# .. .. ..$ : chr [1:2] "Frequency" "%"
# .. .. ..$ : chr [1:3] "setosa" "versicolor" "virginica"
# ..- attr(*, "class")= chr "describe"
# - attr(*, "descript")= chr "iris"
# - attr(*, "dimensions")= int [1:2] 150 5
# - attr(*, "class")= chr "describe"

我们看到 di 是一个列表列表。我们可以通过只查看第一个子列表来分解它。您可以将其转换为矢量:

unlist(di[[1]])
#             descript              counts.n 
#       "Sepal.Length"                 "150" 
#       counts.missing         counts.unique 
#                  "0"                  "35" 
#          counts.Info           counts.Mean 
#                  "1"               "5.843" 
#           counts..05            counts..10 
#              "4.600"               "4.800" 
#           counts..25            counts..50 
#              "5.100"               "5.800" 
#           counts..75            counts..90 
#              "6.400"               "6.900" 
#           counts..95   intervalFreq.range1 
#              "7.255"                 "4.3" 
#  intervalFreq.range2   intervalFreq.count1 
#                "7.9"                   "1" 
#  ...
#            values.H3             values.H2 
#                "7.6"                 "7.7" 
#            values.H1 
#                 "7.9" 
str(unlist(di[[1]]))
# Named chr [1:125] "Sepal.Length" "150" "0" "35" ...
# - attr(*, "names")= chr [1:125] "descript" "counts.n" "counts.missing" "counts.unique" ...

它非常非常长 (125)。元素已被强制为相同(且最具包容性)的类型,即字符。您似乎想要第 2 到第 12 个元素:

unlist(di[[1]])[2:12]
#     counts.n counts.missing  counts.unique    counts.Info 
#        "150"            "0"           "35"            "1" 
#  counts.Mean     counts..05     counts..10     counts..25 
#      "5.843"        "4.600"        "4.800"        "5.100" 
#   counts..50     counts..75     counts..90 
#      "5.800"        "6.400"        "6.900" 

现在您可以开始使用一些东西了。但是请注意,这似乎只适用于数值变量。因子变量 species 不同:

unlist(di[[5]])
#     descript       counts.n counts.missing  counts.unique 
#    "Species"          "150"            "0"            "3" 
#      values1        values2        values3        values4 
#         "50"           "33"           "50"           "33" 
#      values5        values6 
#         "50"           "33" 

在那种情况下,您似乎只需要元素二到四。

使用这个发现和解决问题的过程,您可以看到如何将 describe 的输出分开并将您想要的信息放入数据框中。然而,这将需要大量的工作。您可能需要使用循环和大量 if(){ ... } else{ ... } 块。您可能只想从头开始编写自己的数据集描述函数。

您可以使用 pastecs 包中的 stat.desc 函数来完成此操作:

library(pastecs)
summary_df <- stat.desc(mydata) 

summary_df 是您想要的数据框。查看更多信息 here

在 R 中,您只需使用 summary(iris) 函数代替 Python 中的 describe(iris) 函数。