Pandas 组内的行数按升序排列
Pandas number rows within group in increasing order
给定以下数据框:
import pandas as pd
import numpy as np
df=pd.DataFrame({'A':['A','A','A','B','B','B'],
'B':['a','a','b','a','a','a'],
})
df
A B
0 A a
1 A a
2 A b
3 B a
4 B a
5 B a
我想创建列 'C',它对 A 列和 B 列中每个组中的行进行编号,如下所示:
A B C
0 A a 1
1 A a 2
2 A b 1
3 B a 1
4 B a 2
5 B a 3
到目前为止我已经试过了:
df['C']=df.groupby(['A','B'])['B'].transform('rank')
...但它不起作用!
In [25]: df['C'] = df.groupby(['A','B']).cumcount()+1; df
Out[25]:
A B C
0 A a 1
1 A a 2
2 A b 1
3 B a 1
4 B a 2
5 B a 3
使用groupby.rank函数。
这里是工作示例。
df = pd.DataFrame({'C1':['a', 'a', 'a', 'b', 'b'], 'C2': [1, 2, 3, 4, 5]})
df
C1 C2
a 1
a 2
a 3
b 4
b 5
df["RANK"] = df.groupby("C1")["C2"].rank(method="first", ascending=True)
df
C1 C2 RANK
a 1 1
a 2 2
a 3 3
b 4 1
b 5 2
给定以下数据框:
import pandas as pd
import numpy as np
df=pd.DataFrame({'A':['A','A','A','B','B','B'],
'B':['a','a','b','a','a','a'],
})
df
A B
0 A a
1 A a
2 A b
3 B a
4 B a
5 B a
我想创建列 'C',它对 A 列和 B 列中每个组中的行进行编号,如下所示:
A B C
0 A a 1
1 A a 2
2 A b 1
3 B a 1
4 B a 2
5 B a 3
到目前为止我已经试过了:
df['C']=df.groupby(['A','B'])['B'].transform('rank')
...但它不起作用!
In [25]: df['C'] = df.groupby(['A','B']).cumcount()+1; df
Out[25]:
A B C
0 A a 1
1 A a 2
2 A b 1
3 B a 1
4 B a 2
5 B a 3
使用groupby.rank函数。 这里是工作示例。
df = pd.DataFrame({'C1':['a', 'a', 'a', 'b', 'b'], 'C2': [1, 2, 3, 4, 5]})
df
C1 C2
a 1
a 2
a 3
b 4
b 5
df["RANK"] = df.groupby("C1")["C2"].rank(method="first", ascending=True)
df
C1 C2 RANK
a 1 1
a 2 2
a 3 3
b 4 1
b 5 2