DICT() 和 MATPLOTLIB?

DICT() and MATPLOTLIB?

我创建了一个字典来匹配 sklearn 中决策树的特征重要性与我的 df 中特征的相应名称。下面是代码:

   importances = clf.feature_importances_
   feature_names = ['age','BP','chol','maxh',
          'oldpeak','slope','vessels',
          'sex_0.0','sex_1.0', 
          'pain_1.0','pain_2.0','pain_3.0','pain_4.0',
          'bs_0.0','bs_1.0',
          'ecg_0.0','ecg_1.0','ecg_2.0',
          'ang_0.0','ang_1.0',
          'thal_3.0','thal_6.0','thal_7.0']
   CLF_sorted = dict(zip(feature_names, importances))

在输出中我得到了这个:

   {'BP': 0.053673644739136502,
    'age': 0.014904980747733202,
    'ang_0.0': 0.0,
    'ang_1.0': 0.0,
    'bs_0.0': 0.0,
    'bs_1.0': 0.0,
    'chol': 0.11125922817930389, ...}

如我所料。我有两个问题要问你:

  1. 如何创建一个条形图,其中 x 轴表示 feature_names,y 轴表示相应的 importances

  2. 如果可能的话,我怎样才能以降序方式对条形图进行排序?

试试这个:

import pandas as pd

df = pd.DataFrame({'feature': feature_names , 'importance': importances})
df.sort_values('importance', ascending=False).set_index('feature').plot.bar(rot=0)

演示:

d ={'BP': 0.053673644739136502,
    'age': 0.014904980747733202,
    'ang_0.0': 0.0,
    'ang_1.0': 0.0,
    'bs_0.0': 0.0,
    'bs_1.0': 0.0,
    'chol': 0.11125922817930389}

df = pd.DataFrame({'feature': [x for x in d.keys()], 'importance': [x for x in d.values()]})

In [63]: import matplotlib as mpl

In [64]: mpl.style.use('ggplot')

In [65]: df.sort_values('importance', ascending=False).set_index('feature').plot.bar(rot=0)
Out[65]: <matplotlib.axes._subplots.AxesSubplot at 0x8c83748>