numba 输出的差异
Differences in numba outputs
我在学习中实现了一个基本的最近邻搜索。
事实上,基本的 numpy 实现运行良好,但只是添加了“@jit”装饰器(在 Numba 中编译),输出是不同的(由于某些未知原因,它最终复制了一些邻居......)
基本算法如下:
import numpy as np
from numba import jit
@jit(nopython=True)
def knn(p, points, k):
'''Find the k nearest neighbors (brute force) of the point p
in the list points (each row is a point)'''
n = p.size # Lenght of the points
M = points.shape[0] # Number of points
neighbors = np.zeros((k,n))
distances = 1e6*np.ones(k)
for i in xrange(M):
d = 0
pt = points[i, :] # Point to compare
for r in xrange(n): # For each coordinate
aux = p[r] - pt[r]
d += aux * aux
if d < distances[k-1]: # We find a new neighbor
pos = k-1
while pos>0 and d<distances[pos-1]: # Find the position
pos -= 1
pt = points[i, :]
# Insert neighbor and distance:
neighbors[pos+1:, :] = neighbors[pos:-1, :]
neighbors[pos, :] = pt
distances[pos+1:] = distances[pos:-1]
distances[pos] = d
return neighbors, distances
用于测试:
p = np.random.rand(10)
points = np.random.rand(250, 10)
k = 5
neighbors = knn(p, points, k)
没有@jit 装饰器,得到正确答案:
In [1]: distances
Out[1]: array([ 0.3933974 , 0.44754336, 0.54548715, 0.55619749, 0.5657846 ])
但是 Numba 编译给出了奇怪的输出:
Out[2]: distances
Out[2]: array([ 0.3933974 , 0.44754336, 0.54548715, 0.54548715, 0.54548715])
有人可以帮忙吗?我不明白为什么会这样...
谢谢。
我认为问题在于 Numba 处理将一个切片写入另一个切片的方式与 运行 不重叠时的不同。我不熟悉 numpy 的内部结构,但也许有特殊的逻辑来处理像这样的易失性内存操作,而 Numba 中没有。更改以下行,jit 装饰器的结果与普通 python 版本一致:
neighbors[pos+1:, :] = neighbors[pos:-1, :].copy()
...
distances[pos+1:] = distances[pos:-1].copy()
我在学习中实现了一个基本的最近邻搜索。 事实上,基本的 numpy 实现运行良好,但只是添加了“@jit”装饰器(在 Numba 中编译),输出是不同的(由于某些未知原因,它最终复制了一些邻居......)
基本算法如下:
import numpy as np
from numba import jit
@jit(nopython=True)
def knn(p, points, k):
'''Find the k nearest neighbors (brute force) of the point p
in the list points (each row is a point)'''
n = p.size # Lenght of the points
M = points.shape[0] # Number of points
neighbors = np.zeros((k,n))
distances = 1e6*np.ones(k)
for i in xrange(M):
d = 0
pt = points[i, :] # Point to compare
for r in xrange(n): # For each coordinate
aux = p[r] - pt[r]
d += aux * aux
if d < distances[k-1]: # We find a new neighbor
pos = k-1
while pos>0 and d<distances[pos-1]: # Find the position
pos -= 1
pt = points[i, :]
# Insert neighbor and distance:
neighbors[pos+1:, :] = neighbors[pos:-1, :]
neighbors[pos, :] = pt
distances[pos+1:] = distances[pos:-1]
distances[pos] = d
return neighbors, distances
用于测试:
p = np.random.rand(10)
points = np.random.rand(250, 10)
k = 5
neighbors = knn(p, points, k)
没有@jit 装饰器,得到正确答案:
In [1]: distances
Out[1]: array([ 0.3933974 , 0.44754336, 0.54548715, 0.55619749, 0.5657846 ])
但是 Numba 编译给出了奇怪的输出:
Out[2]: distances
Out[2]: array([ 0.3933974 , 0.44754336, 0.54548715, 0.54548715, 0.54548715])
有人可以帮忙吗?我不明白为什么会这样...
谢谢。
我认为问题在于 Numba 处理将一个切片写入另一个切片的方式与 运行 不重叠时的不同。我不熟悉 numpy 的内部结构,但也许有特殊的逻辑来处理像这样的易失性内存操作,而 Numba 中没有。更改以下行,jit 装饰器的结果与普通 python 版本一致:
neighbors[pos+1:, :] = neighbors[pos:-1, :].copy()
...
distances[pos+1:] = distances[pos:-1].copy()