在 HDFStore 组中存储多个对象
Storing multiple objects in an HDFStore group
我想将多个对象存储在一个HDFStore 中,但我想通过分组来组织它。大致如下:
import pandas as pd
my_store = pd.HDFStore('my_local_store.h5')
my_store._handle.createGroup('/', 'data_source_1') # this works, but I'm not sure what it does
my_store['/data_source_1']['part-1'] = pd.DataFrame({'b':[1,2,9,2,3,5,2,5]}) # this does not work
my_store['/data_source_1']['part-2'] = pd.DataFrame({'b':[3,8,4,2,5,5,6,1]}) # this does not work either
试试这个:
my_store['/data_source_1/part-1'] = ...
演示:
In [13]: store = pd.HDFStore('c:/temp/stocks.h5')
In [15]: store['/aaa/bbb'] = df
In [17]: store.groups
Out[17]:
<bound method HDFStore.groups of <class 'pandas.io.pytables.HDFStore'>
File path: c:/temp/stocks.h5
/aaa/bbb frame (shape->[3,7])
/stocks wide_table (typ->appendable,nrows->6,ncols->3,indexers->[major_axis,minor_axis],dc->[AAPL,ABC,GOOG])>
In [18]: store['/aaa/bbb2'] = df
In [20]: store.items
Out[20]:
<bound method HDFStore.items of <class 'pandas.io.pytables.HDFStore'>
File path: c:/temp/stocks.h5
/aaa/bbb frame (shape->[3,7])
/aaa/bbb2 frame (shape->[3,7])
/stocks wide_table (typ->appendable,nrows->6,ncols->3,indexers->[major_axis,minor_axis],dc->[AAPL,ABC,GOOG])>
更新:
In [29]: store.get_node('/aaa')
Out[29]:
/aaa (Group) ''
children := ['bbb' (Group), 'bbb2' (Group)]
PS AFAIK Pandas 将 key
(/aaa/bbb
) 视为完整路径
更新 2: 列出商店:
我们有以下商店:
In [19]: store
Out[19]:
<class 'pandas.io.pytables.HDFStore'>
File path: D:\temp\.data\hdf\test_groups.h5
/data_source_1/subdir1/1 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index])
/data_source_1/subdir1/2 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index])
/data_source_1/subdir1/3 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index])
/data_source_1/subdir1/4 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index])
/data_source_1/subdir1/5 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index])
/data_source_1/subdir2/1 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[a,b,c])
/data_source_1/subdir2/2 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[a,b,c])
/data_source_1/subdir2/3 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[a,b,c])
/data_source_1/subdir2/4 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[a,b,c])
/data_source_1/subdir2/5 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[a,b,c])
/data_source_1/subdir2/6 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[a,b,c])
/data_source_1/subdir2/7 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[a,b,c])
/data_source_1/subdir2/8 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[a,b,c])
/data_source_1/subdir2/9 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[a,b,c])
让我们找到 /data_source_1/subdir2
中的所有条目:
In [20]: [s for s in store if s.startswith('/data_source_1/subdir2/')]
Out[20]:
['/data_source_1/subdir2/1',
'/data_source_1/subdir2/2',
'/data_source_1/subdir2/3',
'/data_source_1/subdir2/4',
'/data_source_1/subdir2/5',
'/data_source_1/subdir2/6',
'/data_source_1/subdir2/7',
'/data_source_1/subdir2/8',
'/data_source_1/subdir2/9']
有了钥匙你就可以轻松地 select data:
In [25]: dfs = [store.select(s, where='a > 5') for s in store if s.startswith('/data_source_1/subdir2/')]
In [26]: [len(df) for df in dfs]
Out[26]: [5, 5, 5, 5, 5, 5, 5, 5, 5]
In [29]: dfs = [store.select(s, where='a > 7') for s in store if s.startswith('/data_source_1/subdir2/')]
In [30]: [len(df) for df in dfs]
Out[30]: [4, 4, 4, 4, 4, 4, 4, 4, 4]
我想将多个对象存储在一个HDFStore 中,但我想通过分组来组织它。大致如下:
import pandas as pd
my_store = pd.HDFStore('my_local_store.h5')
my_store._handle.createGroup('/', 'data_source_1') # this works, but I'm not sure what it does
my_store['/data_source_1']['part-1'] = pd.DataFrame({'b':[1,2,9,2,3,5,2,5]}) # this does not work
my_store['/data_source_1']['part-2'] = pd.DataFrame({'b':[3,8,4,2,5,5,6,1]}) # this does not work either
试试这个:
my_store['/data_source_1/part-1'] = ...
演示:
In [13]: store = pd.HDFStore('c:/temp/stocks.h5')
In [15]: store['/aaa/bbb'] = df
In [17]: store.groups
Out[17]:
<bound method HDFStore.groups of <class 'pandas.io.pytables.HDFStore'>
File path: c:/temp/stocks.h5
/aaa/bbb frame (shape->[3,7])
/stocks wide_table (typ->appendable,nrows->6,ncols->3,indexers->[major_axis,minor_axis],dc->[AAPL,ABC,GOOG])>
In [18]: store['/aaa/bbb2'] = df
In [20]: store.items
Out[20]:
<bound method HDFStore.items of <class 'pandas.io.pytables.HDFStore'>
File path: c:/temp/stocks.h5
/aaa/bbb frame (shape->[3,7])
/aaa/bbb2 frame (shape->[3,7])
/stocks wide_table (typ->appendable,nrows->6,ncols->3,indexers->[major_axis,minor_axis],dc->[AAPL,ABC,GOOG])>
更新:
In [29]: store.get_node('/aaa')
Out[29]:
/aaa (Group) ''
children := ['bbb' (Group), 'bbb2' (Group)]
PS AFAIK Pandas 将 key
(/aaa/bbb
) 视为完整路径
更新 2: 列出商店:
我们有以下商店:
In [19]: store
Out[19]:
<class 'pandas.io.pytables.HDFStore'>
File path: D:\temp\.data\hdf\test_groups.h5
/data_source_1/subdir1/1 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index])
/data_source_1/subdir1/2 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index])
/data_source_1/subdir1/3 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index])
/data_source_1/subdir1/4 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index])
/data_source_1/subdir1/5 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index])
/data_source_1/subdir2/1 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[a,b,c])
/data_source_1/subdir2/2 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[a,b,c])
/data_source_1/subdir2/3 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[a,b,c])
/data_source_1/subdir2/4 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[a,b,c])
/data_source_1/subdir2/5 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[a,b,c])
/data_source_1/subdir2/6 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[a,b,c])
/data_source_1/subdir2/7 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[a,b,c])
/data_source_1/subdir2/8 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[a,b,c])
/data_source_1/subdir2/9 frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[a,b,c])
让我们找到 /data_source_1/subdir2
中的所有条目:
In [20]: [s for s in store if s.startswith('/data_source_1/subdir2/')]
Out[20]:
['/data_source_1/subdir2/1',
'/data_source_1/subdir2/2',
'/data_source_1/subdir2/3',
'/data_source_1/subdir2/4',
'/data_source_1/subdir2/5',
'/data_source_1/subdir2/6',
'/data_source_1/subdir2/7',
'/data_source_1/subdir2/8',
'/data_source_1/subdir2/9']
有了钥匙你就可以轻松地 select data:
In [25]: dfs = [store.select(s, where='a > 5') for s in store if s.startswith('/data_source_1/subdir2/')]
In [26]: [len(df) for df in dfs]
Out[26]: [5, 5, 5, 5, 5, 5, 5, 5, 5]
In [29]: dfs = [store.select(s, where='a > 7') for s in store if s.startswith('/data_source_1/subdir2/')]
In [30]: [len(df) for df in dfs]
Out[30]: [4, 4, 4, 4, 4, 4, 4, 4, 4]