如何在 SuperpixelSLIC 中找到段的唯一标签
How to find unique labels for segments in SuperpixelSLIC
我正在使用 cv::ximgproc::SuperpixelSLIC opencv c++ 生成图像片段。我希望每个段标签都是唯一的。这是我的代码。
Mat segmentImage() {
int num_iterations = 4;
int prior = 2;
bool double_step = false;
int num_levels = 10;
int num_histogram_bins = 5;
int width, height;
width = h1.size().width;
height = h1.size().height;
seeds = createSuperpixelSLIC(h1);
Mat mask;
seeds->iterate(num_iterations);
Mat labels;
seeds->getLabels(labels);
for (int i = 0; i < labels.rows; i++) {
for (int j = 0; j < labels.cols; j++) {
if (labels.at<int>(i, j) == 0)
cout << i << " " << j << " " << labels.at<int>(i, j) << endl;
}
}
ofstream myfile;
myfile.open("label.txt");
myfile << labels;
myfile.close();
seeds->getLabelContourMask(mask, false);
h1.setTo(Scalar(0, 0, 255), mask);
imshow("result", h1);
imwrite("result.png", h1);
return labels;
}
在label.txt文件中,我观察到标签0被赋予了两个段(即段包括像素(0,0)和像素(692,442)。这两个段很远。
这是正常现象还是我的代码不正确。请帮我找到每个细分市场的唯一标签。
您本质上需要的是连通分量算法。在不知道您使用的确切 SLIC 实现的情况下,SLIC 通常会产生断开连接的超像素,即具有相同标签的断开连接的片段。我使用的一个简单解决方案是此处的连通分量算法形式:https://github.com/davidstutz/matlab-multi-label-connected-components (originally from here: http://xenia.media.mit.edu/~rahimi/connected/)。请注意,此存储库包含一个 MatLab 包装器。在您的情况下,您只需要 connected_components.h
和以下代码:
#include "connected_components.h"
// ...
void relabelSuperpixels(cv::Mat &labels) {
int max_label = 0;
for (int i = 0; i < labels.rows; i++) {
for (int j = 0; j < labels.cols; j++) {
if (labels.at<int>(i, j) > max_label) {
max_label = labels.at<int>(i, j);
}
}
}
int current_label = 0;
std::vector<int> label_correspondence(max_label + 1, -1);
for (int i = 0; i < labels.rows; i++) {
for (int j = 0; j < labels.cols; j++) {
int label = labels.at<int>(i, j);
if (label_correspondence[label] < 0) {
label_correspondence[label] = current_label++;
}
labels.at<int>(i, j) = label_correspondence[label];
}
}
}
int relabelConnectedSuperpixels(cv::Mat &labels) {
relabelSuperpixels(labels);
int max = 0;
for (int i = 0; i < labels.rows; ++i) {
for (int j = 0; j < labels.cols; ++j) {
if (labels.at<int>(i, j) > max) {
max = labels.at<int>(i, j);
}
}
}
ConnectedComponents cc(2*max);
cv::Mat components(labels.rows, labels.cols, CV_32SC1, cv::Scalar(0));
int component_count = cc.connected<int, int, std::equal_to<int>, bool>((int*) labels.data, (int*) components.data, labels.cols,
labels.rows, std::equal_to<int>(), false);
for (int i = 0; i < labels.rows; i++) {
for (int j = 0; j < labels.cols; j++) {
labels.at<int>(i, j) = components.at<int>(i, j);
}
}
// component_count would be the NEXT label index, max is the current highest!
return component_count - max - 1;
}
在获得的标签上,运行 relabelConnectedSuperpixels
.
我正在使用 cv::ximgproc::SuperpixelSLIC opencv c++ 生成图像片段。我希望每个段标签都是唯一的。这是我的代码。
Mat segmentImage() {
int num_iterations = 4;
int prior = 2;
bool double_step = false;
int num_levels = 10;
int num_histogram_bins = 5;
int width, height;
width = h1.size().width;
height = h1.size().height;
seeds = createSuperpixelSLIC(h1);
Mat mask;
seeds->iterate(num_iterations);
Mat labels;
seeds->getLabels(labels);
for (int i = 0; i < labels.rows; i++) {
for (int j = 0; j < labels.cols; j++) {
if (labels.at<int>(i, j) == 0)
cout << i << " " << j << " " << labels.at<int>(i, j) << endl;
}
}
ofstream myfile;
myfile.open("label.txt");
myfile << labels;
myfile.close();
seeds->getLabelContourMask(mask, false);
h1.setTo(Scalar(0, 0, 255), mask);
imshow("result", h1);
imwrite("result.png", h1);
return labels;
}
在label.txt文件中,我观察到标签0被赋予了两个段(即段包括像素(0,0)和像素(692,442)。这两个段很远。
这是正常现象还是我的代码不正确。请帮我找到每个细分市场的唯一标签。
您本质上需要的是连通分量算法。在不知道您使用的确切 SLIC 实现的情况下,SLIC 通常会产生断开连接的超像素,即具有相同标签的断开连接的片段。我使用的一个简单解决方案是此处的连通分量算法形式:https://github.com/davidstutz/matlab-multi-label-connected-components (originally from here: http://xenia.media.mit.edu/~rahimi/connected/)。请注意,此存储库包含一个 MatLab 包装器。在您的情况下,您只需要 connected_components.h
和以下代码:
#include "connected_components.h"
// ...
void relabelSuperpixels(cv::Mat &labels) {
int max_label = 0;
for (int i = 0; i < labels.rows; i++) {
for (int j = 0; j < labels.cols; j++) {
if (labels.at<int>(i, j) > max_label) {
max_label = labels.at<int>(i, j);
}
}
}
int current_label = 0;
std::vector<int> label_correspondence(max_label + 1, -1);
for (int i = 0; i < labels.rows; i++) {
for (int j = 0; j < labels.cols; j++) {
int label = labels.at<int>(i, j);
if (label_correspondence[label] < 0) {
label_correspondence[label] = current_label++;
}
labels.at<int>(i, j) = label_correspondence[label];
}
}
}
int relabelConnectedSuperpixels(cv::Mat &labels) {
relabelSuperpixels(labels);
int max = 0;
for (int i = 0; i < labels.rows; ++i) {
for (int j = 0; j < labels.cols; ++j) {
if (labels.at<int>(i, j) > max) {
max = labels.at<int>(i, j);
}
}
}
ConnectedComponents cc(2*max);
cv::Mat components(labels.rows, labels.cols, CV_32SC1, cv::Scalar(0));
int component_count = cc.connected<int, int, std::equal_to<int>, bool>((int*) labels.data, (int*) components.data, labels.cols,
labels.rows, std::equal_to<int>(), false);
for (int i = 0; i < labels.rows; i++) {
for (int j = 0; j < labels.cols; j++) {
labels.at<int>(i, j) = components.at<int>(i, j);
}
}
// component_count would be the NEXT label index, max is the current highest!
return component_count - max - 1;
}
在获得的标签上,运行 relabelConnectedSuperpixels
.