BLAS 矩阵乘法 NaN
BLAS Matrix multiplication NaN
我正在使用 LAPACK 库执行矩阵的 SVD,然后将矩阵相乘以仔细检查它们是否正确。见下方代码
subroutine svd_and_dgemm() ! -- Matrix decomp: A = USV^t
implicit none
integer,parameter :: m = 2
integer,parameter :: n = 3
integer i,info,lda,ldu,ldv,lwork,l,lds,ldc,ldvt,ldd
real*8 :: a(m,n),a_copy(m,n),sdiag(min(m,n)),s(m,n),u(m,m),vt(n,n),alpha,beta,c(m,n),d(m,n)
character jobu, jobv, transu, transs
real*8, allocatable, dimension ( : ) :: work
lwork = max(1,3*min(m,n) + max(m,n), 5*min(m,n))
allocate (work(lwork))
a = reshape((/3,1,1,-1,3,1/),shape(a),order=(/2, 1/)) !column-wise
print*,'A'
print*, a(1,1), a(1,2), a(1,3)
print*, a(2,1), a(2,2), a(2,3)
jobu = 'A'
jobv = 'A'
lda = m
ldu = m
ldv = n
a_copy = a
call dgesvd (jobu, jobv, m, n, a_copy, lda, sdiag, u, ldu, vt, ldv, work, lwork, info)
if ( info /= 0 ) then
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'R8MAT_SVD_LAPACK - Failure!'
write ( *, '(a)' ) ' The SVD could not be calculated.'
write ( *, '(a)' ) ' LAPACK routine DGESVD returned a nonzero'
write ( *, '(a,i8)' ) ' value of the error flag, INFO = ', info
return
end if
!
! Make the MxN matrix S from the diagonal values in SDIAG.
s(1:m,1:n) = 0.0D+00
do i = 1, min ( m, n )
s(i,i) = sdiag(i)
end do
print*,'U'
print*, u(1,1), u(1,2)
print*, u(2,1), u(2,2)
print*,'S'
print*, s(1,1), s(1,2), s(1,3)
print*, s(2,1), s(2,2), s(2,3)
print*,'Vt'
print*, vt(1,1), vt(1,2), vt(1,3)
print*, vt(2,1), vt(2,2), vt(2,3)
print*, vt(3,1), vt(3,2), vt(3,3)
deallocate (work)
! -- Verify SVD: A = USV^t
! -- Compute C = US
transu = 'N'
transs = 'N'
ldu = m; lds = m; ldc = m
alpha = 1.; beta = 1.
call dgemm(transu,transs,m,n,m,alpha,u,ldu,s,lds,beta,c,ldc)
! -- Compute A = D = CV^t
l = m ! nrows C
ldvt = n; ldd = m
call dgemm(transu,transs,m,n,n,alpha,c,ldc,vt,ldvt,beta,d,ldd)
print*,'C'
print*, c(1,1), c(1,2), c(1,3)
print*, c(2,1), c(2,2), c(2,3)
print*,'D'
print*, d(1,1), d(1,2), d(1,3)
print*, d(2,1), d(2,2), d(2,3)
end subroutine svd_and_dgemm
我得到的输出是
A
3.0000000000000000 1.0000000000000000 1.0000000000000000
-1.0000000000000000 3.0000000000000000 1.0000000000000000
U
-0.70710678118654835 -0.70710678118654657
-0.70710678118654668 0.70710678118654846
S
3.4641016151377553 0.0000000000000000 0.0000000000000000
0.0000000000000000 3.1622776601683795 0.0000000000000000
Vt
-0.40824829046386402 -0.81649658092772526 -0.40824829046386291
-0.89442719099991508 0.44721359549995882 5.2735593669694936E-016
-0.18257418583505536 -0.36514837167011066 0.91287092917527679
C
-2.4494897427831814 -2.2360679774997867 0.0000000000000000
-2.4494897427831757 2.2360679774997929 0.0000000000000000
D
2.9999999999999991 1.0000000000000002 0.99999999999999989
NaN 2.9999999999999991 1.0000000000000000
所以我不确定这个 NaN 是从哪里来的。奇怪的是,如果在以这种方式打印 D 之前,我按如下方式打印它:
print*,'D'
print*, d
然后我不再得到 NaN,所以 D 的输出是
D
2.9999999999999991 -0.99999999999999933 1.0000000000000002 2.9999999999999991 0.99999999999999989 1.0000000000000000
D
2.9999999999999991 1.0000000000000002 0.99999999999999989
-0.99999999999999933 2.9999999999999991 1.0000000000000000
知道为什么会这样吗?
因此,从我们的评论对话来看,您的问题似乎源于未初始化数组。这样做总是好的做法,并且在您执行 var = var +1
之类的操作的情况下,这是必需的。如果你 不幸 你的程序无论如何都可以正常工作。但是当一些垃圾恰好驻留在分配数组的内存中时,偶尔会发生奇怪的事情。
double 应该这样初始化
array = 0.0d0 ! for double precision
或
array = 0 ! ok for single,double and integer
初始化单精度但不是双精度像这样:
array = 0.0 ! single (not double) precision.
或这个
array = 0.0e0 ! single (not double) precision.
我推荐页面 fortran90.org。
我正在使用 LAPACK 库执行矩阵的 SVD,然后将矩阵相乘以仔细检查它们是否正确。见下方代码
subroutine svd_and_dgemm() ! -- Matrix decomp: A = USV^t
implicit none
integer,parameter :: m = 2
integer,parameter :: n = 3
integer i,info,lda,ldu,ldv,lwork,l,lds,ldc,ldvt,ldd
real*8 :: a(m,n),a_copy(m,n),sdiag(min(m,n)),s(m,n),u(m,m),vt(n,n),alpha,beta,c(m,n),d(m,n)
character jobu, jobv, transu, transs
real*8, allocatable, dimension ( : ) :: work
lwork = max(1,3*min(m,n) + max(m,n), 5*min(m,n))
allocate (work(lwork))
a = reshape((/3,1,1,-1,3,1/),shape(a),order=(/2, 1/)) !column-wise
print*,'A'
print*, a(1,1), a(1,2), a(1,3)
print*, a(2,1), a(2,2), a(2,3)
jobu = 'A'
jobv = 'A'
lda = m
ldu = m
ldv = n
a_copy = a
call dgesvd (jobu, jobv, m, n, a_copy, lda, sdiag, u, ldu, vt, ldv, work, lwork, info)
if ( info /= 0 ) then
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'R8MAT_SVD_LAPACK - Failure!'
write ( *, '(a)' ) ' The SVD could not be calculated.'
write ( *, '(a)' ) ' LAPACK routine DGESVD returned a nonzero'
write ( *, '(a,i8)' ) ' value of the error flag, INFO = ', info
return
end if
!
! Make the MxN matrix S from the diagonal values in SDIAG.
s(1:m,1:n) = 0.0D+00
do i = 1, min ( m, n )
s(i,i) = sdiag(i)
end do
print*,'U'
print*, u(1,1), u(1,2)
print*, u(2,1), u(2,2)
print*,'S'
print*, s(1,1), s(1,2), s(1,3)
print*, s(2,1), s(2,2), s(2,3)
print*,'Vt'
print*, vt(1,1), vt(1,2), vt(1,3)
print*, vt(2,1), vt(2,2), vt(2,3)
print*, vt(3,1), vt(3,2), vt(3,3)
deallocate (work)
! -- Verify SVD: A = USV^t
! -- Compute C = US
transu = 'N'
transs = 'N'
ldu = m; lds = m; ldc = m
alpha = 1.; beta = 1.
call dgemm(transu,transs,m,n,m,alpha,u,ldu,s,lds,beta,c,ldc)
! -- Compute A = D = CV^t
l = m ! nrows C
ldvt = n; ldd = m
call dgemm(transu,transs,m,n,n,alpha,c,ldc,vt,ldvt,beta,d,ldd)
print*,'C'
print*, c(1,1), c(1,2), c(1,3)
print*, c(2,1), c(2,2), c(2,3)
print*,'D'
print*, d(1,1), d(1,2), d(1,3)
print*, d(2,1), d(2,2), d(2,3)
end subroutine svd_and_dgemm
我得到的输出是
A
3.0000000000000000 1.0000000000000000 1.0000000000000000
-1.0000000000000000 3.0000000000000000 1.0000000000000000
U
-0.70710678118654835 -0.70710678118654657
-0.70710678118654668 0.70710678118654846
S
3.4641016151377553 0.0000000000000000 0.0000000000000000
0.0000000000000000 3.1622776601683795 0.0000000000000000
Vt
-0.40824829046386402 -0.81649658092772526 -0.40824829046386291
-0.89442719099991508 0.44721359549995882 5.2735593669694936E-016
-0.18257418583505536 -0.36514837167011066 0.91287092917527679
C
-2.4494897427831814 -2.2360679774997867 0.0000000000000000
-2.4494897427831757 2.2360679774997929 0.0000000000000000
D
2.9999999999999991 1.0000000000000002 0.99999999999999989
NaN 2.9999999999999991 1.0000000000000000
所以我不确定这个 NaN 是从哪里来的。奇怪的是,如果在以这种方式打印 D 之前,我按如下方式打印它:
print*,'D'
print*, d
然后我不再得到 NaN,所以 D 的输出是
D
2.9999999999999991 -0.99999999999999933 1.0000000000000002 2.9999999999999991 0.99999999999999989 1.0000000000000000
D
2.9999999999999991 1.0000000000000002 0.99999999999999989
-0.99999999999999933 2.9999999999999991 1.0000000000000000
知道为什么会这样吗?
因此,从我们的评论对话来看,您的问题似乎源于未初始化数组。这样做总是好的做法,并且在您执行 var = var +1
之类的操作的情况下,这是必需的。如果你 不幸 你的程序无论如何都可以正常工作。但是当一些垃圾恰好驻留在分配数组的内存中时,偶尔会发生奇怪的事情。
double 应该这样初始化
array = 0.0d0 ! for double precision
或
array = 0 ! ok for single,double and integer
初始化单精度但不是双精度像这样:
array = 0.0 ! single (not double) precision.
或这个
array = 0.0e0 ! single (not double) precision.
我推荐页面 fortran90.org。