如果连续因素与 R 编辑/合并行

Edit / merge rows if consecutive factor with R

我有这个样本

    data <- structure(list(id = structure(c(1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 
2L, 2L), .Label = c("a", "b"), class = "factor"), minTime = structure(c(1L, 
2L, 3L, 4L, 5L, 7L, 6L, 8L, 9L, 10L), .Label = c("2014-06-06 07:39:50", 
"2014-06-07 02:24:32", "2014-06-07 15:14:29", "2014-06-07 2:29", 
"2014-06-08 5:40", "2014-06-18 17:54:42", "2014-06-18 2:45", 
"2014-06-19 02:37:53", "2014-06-19 19:15", "2014-06-19 22:15"
), class = "factor"), maxTime = structure(c(1L, 3L, 4L, 2L, 5L, 
6L, 7L, 8L, 9L, 10L), .Label = c("2014-06-07 01:41:31", "2014-06-07 10:01", 
"2014-06-07 14:44:08", "2014-06-07 22:31:02", "2014-06-08 5:50", 
"2014-06-18 2:50", "2014-06-19 01:49:05", "2014-06-19 18:51:36", 
"2014-06-19 20:15", "2014-06-19 23:15"), class = "factor"), duration.minutes = c(NA, 
740L, 437L, 452L, NA, NA, 474L, 974L, 4062L, 353L), event = structure(c(1L, 
4L, 4L, 2L, 2L, 1L, 4L, 4L, 3L, 4L), .Label = c("enter", "exit", 
"stop", "trip"), class = "factor")), .Names = c("id", "minTime", 
"maxTime", "duration.minutes", "event"), class = "data.frame", row.names = c(NA, 
-10L))

如果事件对于每个 ID 都是连续的,我想合并事件 "trips"。

id 为 a 和 b 的连续行程已合并:

例如,这个输出:

dput(output.wanted)
structure(list(id = structure(c(1L, 1L, 1L, 2L, 2L, 1L, 2L), .Label = c("a", 
"b"), class = "factor"), minTime = structure(c(5L, 6L, 7L, 2L, 
1L, 3L, 4L), .Label = c("18.6.2014 17:54", "18.6.2014 2:45", 
"19.6.2014 19:15", "19.6.2014 22:15", "6.6.2014 7:39", "7.6.2014 2:24", 
"7.6.2014 2:29"), class = "factor"), maxTime = structure(c(5L, 
7L, 6L, 1L, 2L, 3L, 4L), .Label = c("18.6.2014 2:50", "19.6.2014 18:51", 
"19.6.2014 20:15", "19.6.2014 23:15", "7.6.2014 1:41", "7.6.2014 10:01", 
"7.6.2014 22:31"), class = "factor"), duration.minutes = c(NA, 
1177L, 452L, NA, 1448L, 4062L, 353L), event = structure(c(1L, 
4L, 2L, 1L, 4L, 3L, 4L), .Label = c("enter", "exit", "stop", 
"trip"), class = "factor")), .Names = c("id", "minTime", "maxTime", 
"duration.minutes", "event"), class = "data.frame", row.names = c(NA, 
-7L))

关键是我希望合并所有事件(旅行或停止),如果它们对于同一 ID 是连续的。但如果停靠点或行程是独一无二的,它会保持不变

我一直在尝试用 group_by 和变异来做到这一点,但我有点迷茫...

-- 我找到了解决方案,但事件 stops

仍然存在一个小问题

这是一个示例:

> dput(total)
structure(list(Ship = c(205482000, 205482000, 205482000, 205482000, 
205482000, 205482000, 205482000, 205482000, 205482000, 205482000, 
205482000, 205482000), minTime = structure(c(1401570241, 1401969219, 
1401981860, 1402052108, 1402768362, 1402772602, 1402841443, 1402855773, 
1403056361, 1403278916, 1403290856, 1403367735), class = c("POSIXct", 
"POSIXt")), maxTime = structure(c(1401966639, 1401980399, 1402051849, 
1402056430, 1402772313, 1402839873, 1402852433, 1403052550, 1403276355, 
1403289496, 1403367596, 1403371285), class = c("POSIXct", "POSIXt"
)), duration.minutes = structure(c(6607, 186, 1166, NA, NA, 1121, 
183, 3280, 3667, 176, 1279, NA), class = "difftime", units = "mins"), 
    event = c("stop", "trip", "trip", "exit", "enter", "trip", 
    "trip", "stop", "stop", "trip", "trip", "exit"), dist.sailed = c(NA, 
    50254.2034817555, 349194.108518887, NA, NA, 347816.081064252, 
    50035.8859874946, NA, NA, 49982.687612038, 351978.737678528, 
    NA)), .Names = c("Ship", "minTime", "maxTime", "duration.minutes", 
"event", "dist.sailed"), class = "data.frame", row.names = c(4L, 
5L, 6L, 2L, 1L, 7L, 8L, 9L, 10L, 11L, 12L, 3L))

以下代码未生成完整的停止持续时间,而仅生成 NA:

 total <- total %>% 
    group_by(Ship) %>% 
    mutate(new_id = data.table::rleid(event)) %>% 
    group_by(event, new_id, Ship) %>% 
    mutate(duration.minutes = ifelse(event == 'trip', sum(duration.minutes), duration.minutes), maxTime = tail(maxTime, 1))%>% 
    mutate(duration.minutes = ifelse(event == 'stop', sum(duration.minutes), duration.minutes), maxTime = tail(maxTime, 1))%>% 
    mutate(dist.sailed = ifelse(event == 'trip', sum(dist.sailed), dist.sailed), dist.sailed = tail(dist.sailed, 1)) %>% 
    filter(!duplicated(duration.minutes)) %>% 
    select(-new_id)

我在@Sotos 的代码中添加了mutate(duration.minutes = ifelse(event == 'stop', sum(duration.minutes), duration.minutes), maxTime = tail(maxTime, 1))%>%

如果您使用 dplyr 包,则必须使用 summarise,而不是 mutate 以某种方式组合数据。喜欢

some.df %>% 
group_by(event) %>% 
summarise(sum.maxTime = sum(maxTime), sum.duration = sum(duration.minutes))

Mutate 在您的 data.frame 中添加或更改一列,但结果的行数始终与原始行数相同。 summarise 之后的行号将是数据集中的组数。

希望这对您有所帮助

这有点乱,

library(dplyr)
data %>% 
   group_by(id) %>% 
   mutate(new_id = data.table::rleid(event)) %>% 
   group_by(event, new_id, id) %>% 
   mutate(duration.minutes = ifelse(event == 'trip', sum(duration.minutes), duration.minutes), maxTime = tail(maxTime, 1)) %>% 
   filter(!duplicated(duration.minutes)) %>% 
   select(-new_id) 

#new_id     id             minTime             maxTime duration.minutes  event
#   <int> <fctr>              <fctr>              <fctr>            <int> <fctr>
#1      1      a 2014-06-06 07:39:50 2014-06-07 01:41:31               NA  enter
#2      2      a 2014-06-07 02:24:32 2014-06-07 22:31:02             1177   trip
#3      3      a     2014-06-07 2:29     2014-06-08 5:50              452   exit
#4      3      a     2014-06-08 5:40     2014-06-08 5:50               NA   exit
#5      1      b     2014-06-18 2:45     2014-06-18 2:50               NA  enter
#6      2      b 2014-06-18 17:54:42 2014-06-19 18:51:36             1448   trip
#7      3      b    2014-06-19 19:15    2014-06-19 20:15             4062   stop
#8      4      b    2014-06-19 22:15    2014-06-19 23:15              353   trip

如果我们 运行 stop 而不是 trip 的相同代码,我们会得到以下结果

#new_id      Ship             minTime             maxTime duration.minutes event dist.sailed
#    <int>     <dbl>              <time>              <time>            <dbl> <chr>       <dbl>
#1       1 205482000 2014-06-01 00:04:01 2014-06-05 14:10:39             6607  stop          NA
#2       2 205482000 2014-06-05 14:53:39 2014-06-06 13:50:49              186  trip    50254.20
#3       2 205482000 2014-06-05 18:24:20 2014-06-06 13:50:49             1166  trip   349194.11
#4       3 205482000 2014-06-06 13:55:08 2014-06-06 15:07:10               NA  exit          NA
#5       4 205482000 2014-06-14 20:52:42 2014-06-14 21:58:33               NA enter          NA
#6       5 205482000 2014-06-14 22:03:22 2014-06-15 20:13:53             1121  trip   347816.08
#7       5 205482000 2014-06-15 17:10:43 2014-06-15 20:13:53              183  trip    50035.89
#8       6 205482000 2014-06-15 21:09:33 2014-06-20 17:59:15             6947  stop          NA
#9       7 205482000 2014-06-20 18:41:56 2014-06-21 19:19:56              176  trip    49982.69
#10      7 205482000 2014-06-20 22:00:56 2014-06-21 19:19:56             1279  trip   351978.74
#11      8 205482000 2014-06-21 19:22:15 2014-06-21 20:21:25               NA  exit          NA