如何解读 AWS 机器学习服务的性能结果?
How to interpret performance results of AWS Machine Learning Service?
我正在使用 Amazon Web Service 机器学习服务进行试点,我有一些疑问。
我使用了二元分类器模型,在我看来,所得结果的直方图与数值结果不匹配。根据直方图,False Positives 的分布高于 True Negatives 的分布,但数值结果并未呈现这种行为。
- 778 个真阳性
- 15,178 个真底片
- 6,663 个误报
- 173 个漏报
任何人都可以对此事提出一些见解?
谢谢,
您可以控制截止分数(垂直线),您可以将其从右向左移动,反之亦然。在您的图表中,您将截止分数向左移动,这意味着在大多数情况下您会预测是,因此,与假阴性相比,您将有更多的误报(错误地预测为阳性(=是) .
这是 Amazon Web Services 支持团队通过他们的论坛对我的问题的回答:
After doing some digging around, I found that the Y-axis scaling is
logarithmic for the histograms, which explains why a direct 1:1 area
comparison of the true negatives and false positives would not be
consistent with the numerical results. If we didn't display a
logarithmic scale, my guess would be that most of your Y-axis would be
dominated by the true negative and true positive results and the false
positives and false negatives could be too small to noticeably see.
参考:https://forums.aws.amazon.com/message.jspa?messageID=733706
如果 Y 轴是对数的,则结果与提供的直方图匹配。
我正在使用 Amazon Web Service 机器学习服务进行试点,我有一些疑问。
我使用了二元分类器模型,在我看来,所得结果的直方图与数值结果不匹配。根据直方图,False Positives 的分布高于 True Negatives 的分布,但数值结果并未呈现这种行为。
- 778 个真阳性
- 15,178 个真底片
- 6,663 个误报
- 173 个漏报
任何人都可以对此事提出一些见解?
谢谢,
您可以控制截止分数(垂直线),您可以将其从右向左移动,反之亦然。在您的图表中,您将截止分数向左移动,这意味着在大多数情况下您会预测是,因此,与假阴性相比,您将有更多的误报(错误地预测为阳性(=是) .
这是 Amazon Web Services 支持团队通过他们的论坛对我的问题的回答:
After doing some digging around, I found that the Y-axis scaling is logarithmic for the histograms, which explains why a direct 1:1 area comparison of the true negatives and false positives would not be consistent with the numerical results. If we didn't display a logarithmic scale, my guess would be that most of your Y-axis would be dominated by the true negative and true positive results and the false positives and false negatives could be too small to noticeably see.
参考:https://forums.aws.amazon.com/message.jspa?messageID=733706
如果 Y 轴是对数的,则结果与提供的直方图匹配。