"sequences" 参数在 theano.scan 中接受哪些参数以及它们是如何解释的
What arguments does "sequences" paramater take in theano.scan and how are they interpreted
我从http://deeplearning.net/software/theano/library/scan.html
中获取了以下代码
import numpy
coefficients = theano.tensor.vector("coefficients")
x = T.scalar("x")
max_coefficients_supported = 10000
# Generate the components of the polynomial
components, updates = theano.scan(fn=lambda coefficient, power, free_variable: coefficient * (free_variable ** power),
outputs_info=None,
sequences=[coefficients, theano.tensor.arange(max_coefficients_supported)],
non_sequences=x)
这里的代码是为了解释"sequences"参数。
这是我的问题:
序列是如何馈送的?第一项 "coefficients" 是一个张量变量。第二项 "theano.tensor.arange(max_coefficients)" 是一个张量变量,它在使用 eval() 时给出一个包含 [0......999] 的列表。教程说-
"The tensor(s) to be looped over should be provided to scan using the sequence keyword argument."
根据 "sequences" 中提供的参数,这里的循环是如何发生的?
参数的顺序是:sequence[t],outputs_infor,non_sequence
coefficients[t]
theano.tensor.arange(max_coefficients_supported)[t]
x
outputs_infor保存上一次迭代的结果
我从http://deeplearning.net/software/theano/library/scan.html
中获取了以下代码 import numpy
coefficients = theano.tensor.vector("coefficients")
x = T.scalar("x")
max_coefficients_supported = 10000
# Generate the components of the polynomial
components, updates = theano.scan(fn=lambda coefficient, power, free_variable: coefficient * (free_variable ** power),
outputs_info=None,
sequences=[coefficients, theano.tensor.arange(max_coefficients_supported)],
non_sequences=x)
这里的代码是为了解释"sequences"参数。 这是我的问题:
序列是如何馈送的?第一项 "coefficients" 是一个张量变量。第二项 "theano.tensor.arange(max_coefficients)" 是一个张量变量,它在使用 eval() 时给出一个包含 [0......999] 的列表。教程说-
"The tensor(s) to be looped over should be provided to scan using the sequence keyword argument."
根据 "sequences" 中提供的参数,这里的循环是如何发生的?
参数的顺序是:sequence[t],outputs_infor,non_sequence
coefficients[t]
theano.tensor.arange(max_coefficients_supported)[t]
x
outputs_infor保存上一次迭代的结果