如何在 cython prange 块中使用 gsl 集成?
How to use gsl integration in a cython prange block?
为了使事情更通用,以 gsl_integration_qag
为例(因为它需要一个工作区来管理间隔)。
这是一个特意设计的简单例子(problem.pyx
):
from libc.math cimport cos
from cython.parallel import prange
from cython_gsl cimport *
cdef double mean(double[:] arr):
cdef Py_ssize_t i
cdef double sum_ = 0.0
for i in range(arr.shape[0]):
sum_ += arr[i]
return sum_ / arr.shape[0]
cdef double integrand(double x, void *params) nogil:
cdef double a = (<double*>params)[0]
cdef double b = (<double*>params)[1]
return a*x + b
def use_gsl_integration_sequential():
cdef double result, error
cdef Py_ssize_t i, j
cdef double result_sum=0.0
cdef double results[3]
cdef double a=0.0, b=0.0
cdef double da = 0.1
cdef size_t space_size = 1000
cdef gsl_function gsl_func
cdef double params[2]
gsl_func.function = &integrand
cdef gsl_integration_workspace *ws
ws= gsl_integration_workspace_alloc(space_size)
for i in range(3):
a += da
result_sum = 0.0 # reset the sum(thank J.J.Hakala for pointing out this)
for j in range(4): # here may be range(100000) in practice!
b = a + j
params[0] = a; params[1] = b
gsl_func.params = params
gsl_integration_qag(&gsl_func, 0.0, 1.0, 1e-8, 1e-8, space_size, GSL_INTEG_GAUSS15, ws, &result, &error)
result_sum += result
results[i] = result_sum
gsl_integration_workspace_free(ws)
# do some other stuff with the 'results', for example:
return mean(results)
# Now, I want to parallel the inner loop
def use_gsl_integration_parallel():
cdef double result, error
cdef Py_ssize_t i, j
cdef double result_sum=0.0
cdef double results[3]
cdef double a, b
cdef double da = 0.1
cdef size_t space_size = 1000
cdef gsl_function gsl_func
cdef double params[2]
gsl_func.function = &integrand
cdef gsl_integration_workspace *ws
ws= gsl_integration_workspace_alloc(space_size)
for i in range(3):
# a should be read-only in the follow prange block.
a += da
# here may be prange(100000,...) in practice!
for j in prange(4, nogil=True):
# b should be local private.
b = a + j
# params also should be local private
params[0] = a; params[1] = b
# gsl_func is shared, only its params differ.
# According to the gsl manual(see follow link), workspaces should be allocated on a per-thread basis, but how?
gsl_func.params = params
gsl_integration_qag(&gsl_func, 0.0, 1.0, 1e-8, 1e-8, space_size, GSL_INTEG_GAUSS15, ws, &result, &error)
result_sum += result
results[i] = result_sum
gsl_integration_workspace_free(ws)
return mean(results)
代码有点长,只是为了完整(复制),但我觉得比较简单(阅读)(๑•ᴗ•๑)
然后编译 & link:
cython -a -2 problem.pyx
gcc -O3 -fopenmp -c problem.c -o problem.o -IC:\gsl2.1x86\include -IC:\python-2.7.10\include
gcc -shared -fPIC -fopenmp -o problem.pyd -LC:\gsl2.1x86\libs -LC:\python-2.7.10\libs problem.o -l:libgsl.a -l:libgslcblas.dll.a -l:libpython27.dll.a
在IPython中:
In [1]: from problem import *
In [2]: use_gsl_integration_sequential()
Out[2]: 7.2
use_gsl_integration_parallel()
的结果是undefined,我试了几次,最多的时候会崩溃,运气好的话,得到一个undefined值,所以肯定有问题!我就是找不到这样的平行例子。有人会帮助我吗?
环境:
win10-64bit, gcc (tdm-1) 5.1.0 32bit, python-2.7.10 32bit, cython0.24, gsl-2.1
一些有用的参考资料?:
https://github.com/twiecki/CythonGSL
https://www.gnu.org/software/gsl/manual/html_node/Thread_002dsafety.html#Thread_002dsafety
(抱歉,无法 post 更多信息,两个 link 是我的极限...
当我测试该代码时,出现分段错误(linux,gcc 4.9.2)。
我认为原代码存在以下问题
- 四个线程共享多个变量,每个线程都应该有自己的
- 相同的工作 space 在这些线程中使用
以下版本给出7.2。顺序版本是否真的正确,因为它没有在
中设置 result_sum = 0.0
for i in range(3):
a += da
result_sum = 0.0
from openmp cimport omp_get_max_threads, omp_get_thread_num
def use_gsl_integration_parallel():
cdef double result
cdef Py_ssize_t i, j
cdef double result_sum
cdef double results[3]
cdef double results2[4]
cdef double a
cdef double b[4]
cdef double error[4]
cdef double da = 0.1
cdef size_t space_size = 1000
cdef gsl_function gsl_func[4]
cdef double params[4][2]
cdef int tid
cdef gsl_integration_workspace ** ws = <gsl_integration_workspace **>malloc(omp_get_max_threads() * sizeof(gsl_integration_workspace *))
for j in range(omp_get_max_threads()):
ws[j] = gsl_integration_workspace_alloc(space_size)
for i in range(3):
a += da
for j in prange(4, nogil=True):
tid = omp_get_thread_num()
b[tid] = a + j
params[tid][0] = a;
params[tid][1] = b[tid]
gsl_func[tid].function = &integrand
gsl_func[tid].params = params[tid]
gsl_integration_qag(&gsl_func[tid], 0.0, 1.0, 1e-8, 1e-8,
space_size, GSL_INTEG_GAUSS15, ws[tid],
&results2[j], &error[j])
# printf("tid %d\n", tid)
results[i] = sum(results2)
for j in range(omp_get_max_threads()):
gsl_integration_workspace_free(ws[j])
free(ws)
return mean(results)
感谢@J.J.Hakala,我终于弄清楚了如何让这些东西发挥作用。我改造了示例,并做了一些简单的配置文件。我只是post这里,希望有一天它能对一些科学计算的新手(比如我)有所帮助。
如有错误,请指正。谢谢!
# cython: cdivision=True
# cython: boundscheck=False
# cython: wraparound=False
from libc.stdlib cimport malloc, free
from libc.math cimport sin
from cython.parallel import prange
from cython_gsl cimport *
cimport openmp
cdef double arr_sum(double *arr, size_t arr_len):
cdef size_t i
cdef double sum_ = 0.0
for i in range(arr_len):
sum_ += arr[i]
return sum_
cdef double arr_mean(double *arr, size_t arr_len):
return arr_sum(arr, arr_len) / arr_len
# A random chosen integrand function for demo.
cdef double integrand(double x, void *params) nogil:
cdef double a = (<double*>params)[0]
cdef double b = (<double*>params)[1]
return sin(a*x + b)
def sequential_solution(int outer_loops, int inner_loops):
cdef double result, error
cdef size_t i, j
cdef double result_sum=0.0, mean_val
cdef double *results = <double*>malloc(sizeof(double) * outer_loops)
cdef double a=0.0, da = 0.1
cdef size_t space_size = 1000
cdef gsl_function gsl_func
cdef double params[2]
gsl_func.function = &integrand
cdef gsl_integration_workspace *ws = gsl_integration_workspace_alloc(space_size)
for i in range(outer_loops):
a += da
result_sum = 0.0
for j in range(inner_loops):
params[0] = a; params[1] = a + j
gsl_func.params = params
gsl_integration_qag(&gsl_func, 0.0, 1.0, 1e-8, 1e-8, space_size, GSL_INTEG_GAUSS15, ws, &result, &error)
result_sum += result
results[i] = result_sum
mean_val = arr_mean(results, outer_loops)
gsl_integration_workspace_free(ws)
free(results)
return mean_val
def parallel_solution(int outer_loops, int inner_loops, int num_threads):
cdef size_t i, j
cdef double a = 0.0
cdef double da = 0.1
cdef double mean_val = 0.0
cdef size_t space_size = 1000
# Heavy malloc!
cdef double *outer_results = <double*>malloc(sizeof(double) * outer_loops)
cdef double *inner_results = <double*>malloc(sizeof(double) * inner_loops)
#cdef double *error = <double*>malloc(sizeof(double) * inner_loops)
cdef double error # Ignore the integration abserror in parallel
cdef gsl_function *gsl_func = <gsl_function*>malloc(sizeof(gsl_function) * inner_loops)
cdef double *params = <double*>malloc(sizeof(double) * inner_loops * 2)
cdef gsl_integration_workspace **ws = <gsl_integration_workspace**>malloc(sizeof(gsl_integration_workspace*) * num_threads)
for i in range(num_threads):
ws[i] = gsl_integration_workspace_alloc(space_size)
for i in range(outer_loops):
a += da
for j in prange(inner_loops, nogil=True, num_threads=num_threads):
error = 0 # local private.
params[2*j] = a; params[2*j+1] = a+j
gsl_func[j].function = &integrand
gsl_func[j].params = params + 2*j
# ws[openmp.omp_get_thread_num()] guarantees each thread shares it's own workspace,
# since workspace is resuable in a thread. If two thread access the same workspace, data will corrupt.
gsl_integration_qag(&gsl_func[j], 0.0, 1.0, 1e-8, 1e-8,
space_size, GSL_INTEG_GAUSS15, ws[openmp.omp_get_thread_num()],
&inner_results[j], &error)
outer_results[i] = arr_sum(inner_results, inner_loops)
mean_val = arr_mean(outer_results, outer_loops)
# Now, free
for i in range(num_threads):
gsl_integration_workspace_free(ws[i])
free(ws)
free(params)
free(gsl_func)
#free(error)
free(inner_results)
free(outer_results)
return mean_val
def parallel_solution_ver(int outer_loops, int inner_loops, int num_threads):
cdef size_t i, j
cdef double a = 0.0
cdef double da = 0.1
cdef double mean_val = 0.0
cdef size_t space_size = 1000
cdef double *outer_results = <double*>malloc(sizeof(double) * outer_loops)
#cdef double *inner_results = <double*>malloc(sizeof(double) * inner_loops)
cdef double inner_result, inner_result_sum # no need to malloc a inner_results
#cdef double *error = <double*>malloc(sizeof(double) * inner_loops)
cdef double error # Ignore the integration abserror in parallel
cdef gsl_function *gsl_func = <gsl_function*>malloc(sizeof(gsl_function) * inner_loops)
cdef double *params = <double*>malloc(sizeof(double) * inner_loops * 2)
cdef gsl_integration_workspace **ws = <gsl_integration_workspace**>malloc(sizeof(gsl_integration_workspace*) * num_threads)
for i in range(num_threads):
ws[i] = gsl_integration_workspace_alloc(space_size)
for i in range(outer_loops):
a += da
inner_result_sum = 0.0 # reduction(+: inner_result_sum)
for j in prange(inner_loops, nogil=True, num_threads=num_threads):
inner_result = 0.0 # local private.
error = 0 # local private.
params[2*j] = a; params[2*j+1] = a+j
gsl_func[j].function = &integrand
gsl_func[j].params = params + 2*j
# ws[openmp.omp_get_thread_num()] guarantees each thread shares it's own workspace,
# since workspace is resuable in a thread. If two thread access the same workspace, data will corrupt.
gsl_integration_qag(&gsl_func[j], 0.0, 1.0, 1e-8, 1e-8,
space_size, GSL_INTEG_GAUSS15, ws[openmp.omp_get_thread_num()],
&inner_result, &error)
inner_result_sum += inner_result
outer_results[i] = inner_result_sum
mean_val = arr_mean(outer_results, outer_loops)
# Now, free
for i in range(num_threads):
gsl_integration_workspace_free(ws[i])
free(ws)
free(params)
free(gsl_func)
#free(error)
#free(inner_results)
free(outer_results)
return mean_val
更新:不需要 malloc 一个 results
数组,添加了一个更新的解决方案 parallel_solution_ver
我认为它更好,尽管它的效率几乎与 parallel_solution
在 IPython 笔记本中:
%matplotlib inline
from problem import *
import matplotlib.pyplot as plt
max_exp = 20
times_seq = []
for loops in [2**n for n in range(max_exp)]:
res = %timeit -n 1 -r 5 -o sequential_solution(10, loops)
times_seq.append((loops, res))
times_p = []
for loops in [2**n for n in range(max_exp)]:
res = %timeit -n 1 -r 5 -o parallel_solution(10, loops, 8)
times_p.append((loops, res))
times_p_ver = []
for loops in [2**n for n in range(max_exp)]:
res = %timeit -n 1 -r 5 -o parallel_solution_ver(10, loops, 8)
times_p_ver.append((loops, res))
time_results = [times_seq, times_p, times_p_ver]
labels = ["sequential solution", "parallel solution", "parallel solution_ver"]
colors = ['r', 'y', 'g']
markers = ['s', '+', 'o']
line_params = [
{"sequential solution": {"color": "r", "marker": "s", "ms": 6}},
{"parallel solution": {"color": "g", "marker": "+", "ms": 20, "mew": 1}},
{"parallel solution_ver": {"color": "b", "marker": "o", "ms": 6}}
]
for results, param in zip(time_results, line_params):
loops = [res[0] for res in results]
times = [res[1].best for res in results]
plt.loglog(loops, times, label=param.keys()[0], **param.values()[0])
plt.xlabel("inner loops")
plt.ylabel("exec time (ms)")
plt.legend(loc=0)
print "loops sequential parallel parallel_ver"
for s, p, p_v in zip(times_seq, times_p, times_p):
print "n = {:6d} {:f}s {:f}s {:f}s".format(s[0], s[1].best, p[1].best, p_v[1].best)
# Same result? Yes!
print sequential_solution(10, 2**19) # 0.0616505777102
print parallel_solution(10, 2**19, 8) # 0.0616505777102
print parallel_solution_ver(10, 2**19, 8) # 0.0616505777102
loops sequential parallel parallel_ver
n = 1 0.000009s 0.001450s 0.001450s
n = 2 0.000016s 0.001435s 0.001435s
n = 4 0.000032s 0.001447s 0.001447s
n = 8 0.000063s 0.001454s 0.001454s
n = 16 0.000125s 0.001396s 0.001396s
n = 32 0.000251s 0.001389s 0.001389s
n = 64 0.000505s 0.001387s 0.001387s
n = 128 0.001016s 0.001360s 0.001360s
n = 256 0.002039s 0.001683s 0.001683s
n = 512 0.003846s 0.001844s 0.001844s
n = 1024 0.007717s 0.002416s 0.002416s
n = 2048 0.015395s 0.003575s 0.003575s
n = 4096 0.030817s 0.006055s 0.006055s
n = 8192 0.061689s 0.010820s 0.010820s
n = 16384 0.123445s 0.020872s 0.020872s
n = 32768 0.246928s 0.040165s 0.040165s
n = 65536 0.493903s 0.079077s 0.079077s
n = 131072 0.987832s 0.156176s 0.156176s
n = 262144 1.975107s 0.311151s 0.311151s
n = 524288 3.949421s 0.617181s 0.617181s
为了使事情更通用,以 gsl_integration_qag
为例(因为它需要一个工作区来管理间隔)。
这是一个特意设计的简单例子(problem.pyx
):
from libc.math cimport cos
from cython.parallel import prange
from cython_gsl cimport *
cdef double mean(double[:] arr):
cdef Py_ssize_t i
cdef double sum_ = 0.0
for i in range(arr.shape[0]):
sum_ += arr[i]
return sum_ / arr.shape[0]
cdef double integrand(double x, void *params) nogil:
cdef double a = (<double*>params)[0]
cdef double b = (<double*>params)[1]
return a*x + b
def use_gsl_integration_sequential():
cdef double result, error
cdef Py_ssize_t i, j
cdef double result_sum=0.0
cdef double results[3]
cdef double a=0.0, b=0.0
cdef double da = 0.1
cdef size_t space_size = 1000
cdef gsl_function gsl_func
cdef double params[2]
gsl_func.function = &integrand
cdef gsl_integration_workspace *ws
ws= gsl_integration_workspace_alloc(space_size)
for i in range(3):
a += da
result_sum = 0.0 # reset the sum(thank J.J.Hakala for pointing out this)
for j in range(4): # here may be range(100000) in practice!
b = a + j
params[0] = a; params[1] = b
gsl_func.params = params
gsl_integration_qag(&gsl_func, 0.0, 1.0, 1e-8, 1e-8, space_size, GSL_INTEG_GAUSS15, ws, &result, &error)
result_sum += result
results[i] = result_sum
gsl_integration_workspace_free(ws)
# do some other stuff with the 'results', for example:
return mean(results)
# Now, I want to parallel the inner loop
def use_gsl_integration_parallel():
cdef double result, error
cdef Py_ssize_t i, j
cdef double result_sum=0.0
cdef double results[3]
cdef double a, b
cdef double da = 0.1
cdef size_t space_size = 1000
cdef gsl_function gsl_func
cdef double params[2]
gsl_func.function = &integrand
cdef gsl_integration_workspace *ws
ws= gsl_integration_workspace_alloc(space_size)
for i in range(3):
# a should be read-only in the follow prange block.
a += da
# here may be prange(100000,...) in practice!
for j in prange(4, nogil=True):
# b should be local private.
b = a + j
# params also should be local private
params[0] = a; params[1] = b
# gsl_func is shared, only its params differ.
# According to the gsl manual(see follow link), workspaces should be allocated on a per-thread basis, but how?
gsl_func.params = params
gsl_integration_qag(&gsl_func, 0.0, 1.0, 1e-8, 1e-8, space_size, GSL_INTEG_GAUSS15, ws, &result, &error)
result_sum += result
results[i] = result_sum
gsl_integration_workspace_free(ws)
return mean(results)
代码有点长,只是为了完整(复制),但我觉得比较简单(阅读)(๑•ᴗ•๑)
然后编译 & link:
cython -a -2 problem.pyx
gcc -O3 -fopenmp -c problem.c -o problem.o -IC:\gsl2.1x86\include -IC:\python-2.7.10\include
gcc -shared -fPIC -fopenmp -o problem.pyd -LC:\gsl2.1x86\libs -LC:\python-2.7.10\libs problem.o -l:libgsl.a -l:libgslcblas.dll.a -l:libpython27.dll.a
在IPython中:
In [1]: from problem import *
In [2]: use_gsl_integration_sequential()
Out[2]: 7.2
use_gsl_integration_parallel()
的结果是undefined,我试了几次,最多的时候会崩溃,运气好的话,得到一个undefined值,所以肯定有问题!我就是找不到这样的平行例子。有人会帮助我吗?
环境:
win10-64bit, gcc (tdm-1) 5.1.0 32bit, python-2.7.10 32bit, cython0.24, gsl-2.1
一些有用的参考资料?:
https://github.com/twiecki/CythonGSL
https://www.gnu.org/software/gsl/manual/html_node/Thread_002dsafety.html#Thread_002dsafety
(抱歉,无法 post 更多信息,两个 link 是我的极限...
当我测试该代码时,出现分段错误(linux,gcc 4.9.2)。
我认为原代码存在以下问题
- 四个线程共享多个变量,每个线程都应该有自己的
- 相同的工作 space 在这些线程中使用
以下版本给出7.2。顺序版本是否真的正确,因为它没有在
中设置result_sum = 0.0
for i in range(3):
a += da
result_sum = 0.0
from openmp cimport omp_get_max_threads, omp_get_thread_num
def use_gsl_integration_parallel():
cdef double result
cdef Py_ssize_t i, j
cdef double result_sum
cdef double results[3]
cdef double results2[4]
cdef double a
cdef double b[4]
cdef double error[4]
cdef double da = 0.1
cdef size_t space_size = 1000
cdef gsl_function gsl_func[4]
cdef double params[4][2]
cdef int tid
cdef gsl_integration_workspace ** ws = <gsl_integration_workspace **>malloc(omp_get_max_threads() * sizeof(gsl_integration_workspace *))
for j in range(omp_get_max_threads()):
ws[j] = gsl_integration_workspace_alloc(space_size)
for i in range(3):
a += da
for j in prange(4, nogil=True):
tid = omp_get_thread_num()
b[tid] = a + j
params[tid][0] = a;
params[tid][1] = b[tid]
gsl_func[tid].function = &integrand
gsl_func[tid].params = params[tid]
gsl_integration_qag(&gsl_func[tid], 0.0, 1.0, 1e-8, 1e-8,
space_size, GSL_INTEG_GAUSS15, ws[tid],
&results2[j], &error[j])
# printf("tid %d\n", tid)
results[i] = sum(results2)
for j in range(omp_get_max_threads()):
gsl_integration_workspace_free(ws[j])
free(ws)
return mean(results)
感谢@J.J.Hakala,我终于弄清楚了如何让这些东西发挥作用。我改造了示例,并做了一些简单的配置文件。我只是post这里,希望有一天它能对一些科学计算的新手(比如我)有所帮助。
如有错误,请指正。谢谢!
# cython: cdivision=True
# cython: boundscheck=False
# cython: wraparound=False
from libc.stdlib cimport malloc, free
from libc.math cimport sin
from cython.parallel import prange
from cython_gsl cimport *
cimport openmp
cdef double arr_sum(double *arr, size_t arr_len):
cdef size_t i
cdef double sum_ = 0.0
for i in range(arr_len):
sum_ += arr[i]
return sum_
cdef double arr_mean(double *arr, size_t arr_len):
return arr_sum(arr, arr_len) / arr_len
# A random chosen integrand function for demo.
cdef double integrand(double x, void *params) nogil:
cdef double a = (<double*>params)[0]
cdef double b = (<double*>params)[1]
return sin(a*x + b)
def sequential_solution(int outer_loops, int inner_loops):
cdef double result, error
cdef size_t i, j
cdef double result_sum=0.0, mean_val
cdef double *results = <double*>malloc(sizeof(double) * outer_loops)
cdef double a=0.0, da = 0.1
cdef size_t space_size = 1000
cdef gsl_function gsl_func
cdef double params[2]
gsl_func.function = &integrand
cdef gsl_integration_workspace *ws = gsl_integration_workspace_alloc(space_size)
for i in range(outer_loops):
a += da
result_sum = 0.0
for j in range(inner_loops):
params[0] = a; params[1] = a + j
gsl_func.params = params
gsl_integration_qag(&gsl_func, 0.0, 1.0, 1e-8, 1e-8, space_size, GSL_INTEG_GAUSS15, ws, &result, &error)
result_sum += result
results[i] = result_sum
mean_val = arr_mean(results, outer_loops)
gsl_integration_workspace_free(ws)
free(results)
return mean_val
def parallel_solution(int outer_loops, int inner_loops, int num_threads):
cdef size_t i, j
cdef double a = 0.0
cdef double da = 0.1
cdef double mean_val = 0.0
cdef size_t space_size = 1000
# Heavy malloc!
cdef double *outer_results = <double*>malloc(sizeof(double) * outer_loops)
cdef double *inner_results = <double*>malloc(sizeof(double) * inner_loops)
#cdef double *error = <double*>malloc(sizeof(double) * inner_loops)
cdef double error # Ignore the integration abserror in parallel
cdef gsl_function *gsl_func = <gsl_function*>malloc(sizeof(gsl_function) * inner_loops)
cdef double *params = <double*>malloc(sizeof(double) * inner_loops * 2)
cdef gsl_integration_workspace **ws = <gsl_integration_workspace**>malloc(sizeof(gsl_integration_workspace*) * num_threads)
for i in range(num_threads):
ws[i] = gsl_integration_workspace_alloc(space_size)
for i in range(outer_loops):
a += da
for j in prange(inner_loops, nogil=True, num_threads=num_threads):
error = 0 # local private.
params[2*j] = a; params[2*j+1] = a+j
gsl_func[j].function = &integrand
gsl_func[j].params = params + 2*j
# ws[openmp.omp_get_thread_num()] guarantees each thread shares it's own workspace,
# since workspace is resuable in a thread. If two thread access the same workspace, data will corrupt.
gsl_integration_qag(&gsl_func[j], 0.0, 1.0, 1e-8, 1e-8,
space_size, GSL_INTEG_GAUSS15, ws[openmp.omp_get_thread_num()],
&inner_results[j], &error)
outer_results[i] = arr_sum(inner_results, inner_loops)
mean_val = arr_mean(outer_results, outer_loops)
# Now, free
for i in range(num_threads):
gsl_integration_workspace_free(ws[i])
free(ws)
free(params)
free(gsl_func)
#free(error)
free(inner_results)
free(outer_results)
return mean_val
def parallel_solution_ver(int outer_loops, int inner_loops, int num_threads):
cdef size_t i, j
cdef double a = 0.0
cdef double da = 0.1
cdef double mean_val = 0.0
cdef size_t space_size = 1000
cdef double *outer_results = <double*>malloc(sizeof(double) * outer_loops)
#cdef double *inner_results = <double*>malloc(sizeof(double) * inner_loops)
cdef double inner_result, inner_result_sum # no need to malloc a inner_results
#cdef double *error = <double*>malloc(sizeof(double) * inner_loops)
cdef double error # Ignore the integration abserror in parallel
cdef gsl_function *gsl_func = <gsl_function*>malloc(sizeof(gsl_function) * inner_loops)
cdef double *params = <double*>malloc(sizeof(double) * inner_loops * 2)
cdef gsl_integration_workspace **ws = <gsl_integration_workspace**>malloc(sizeof(gsl_integration_workspace*) * num_threads)
for i in range(num_threads):
ws[i] = gsl_integration_workspace_alloc(space_size)
for i in range(outer_loops):
a += da
inner_result_sum = 0.0 # reduction(+: inner_result_sum)
for j in prange(inner_loops, nogil=True, num_threads=num_threads):
inner_result = 0.0 # local private.
error = 0 # local private.
params[2*j] = a; params[2*j+1] = a+j
gsl_func[j].function = &integrand
gsl_func[j].params = params + 2*j
# ws[openmp.omp_get_thread_num()] guarantees each thread shares it's own workspace,
# since workspace is resuable in a thread. If two thread access the same workspace, data will corrupt.
gsl_integration_qag(&gsl_func[j], 0.0, 1.0, 1e-8, 1e-8,
space_size, GSL_INTEG_GAUSS15, ws[openmp.omp_get_thread_num()],
&inner_result, &error)
inner_result_sum += inner_result
outer_results[i] = inner_result_sum
mean_val = arr_mean(outer_results, outer_loops)
# Now, free
for i in range(num_threads):
gsl_integration_workspace_free(ws[i])
free(ws)
free(params)
free(gsl_func)
#free(error)
#free(inner_results)
free(outer_results)
return mean_val
更新:不需要 malloc 一个 results
数组,添加了一个更新的解决方案 parallel_solution_ver
我认为它更好,尽管它的效率几乎与 parallel_solution
在 IPython 笔记本中:
%matplotlib inline
from problem import *
import matplotlib.pyplot as plt
max_exp = 20
times_seq = []
for loops in [2**n for n in range(max_exp)]:
res = %timeit -n 1 -r 5 -o sequential_solution(10, loops)
times_seq.append((loops, res))
times_p = []
for loops in [2**n for n in range(max_exp)]:
res = %timeit -n 1 -r 5 -o parallel_solution(10, loops, 8)
times_p.append((loops, res))
times_p_ver = []
for loops in [2**n for n in range(max_exp)]:
res = %timeit -n 1 -r 5 -o parallel_solution_ver(10, loops, 8)
times_p_ver.append((loops, res))
time_results = [times_seq, times_p, times_p_ver]
labels = ["sequential solution", "parallel solution", "parallel solution_ver"]
colors = ['r', 'y', 'g']
markers = ['s', '+', 'o']
line_params = [
{"sequential solution": {"color": "r", "marker": "s", "ms": 6}},
{"parallel solution": {"color": "g", "marker": "+", "ms": 20, "mew": 1}},
{"parallel solution_ver": {"color": "b", "marker": "o", "ms": 6}}
]
for results, param in zip(time_results, line_params):
loops = [res[0] for res in results]
times = [res[1].best for res in results]
plt.loglog(loops, times, label=param.keys()[0], **param.values()[0])
plt.xlabel("inner loops")
plt.ylabel("exec time (ms)")
plt.legend(loc=0)
print "loops sequential parallel parallel_ver"
for s, p, p_v in zip(times_seq, times_p, times_p):
print "n = {:6d} {:f}s {:f}s {:f}s".format(s[0], s[1].best, p[1].best, p_v[1].best)
# Same result? Yes!
print sequential_solution(10, 2**19) # 0.0616505777102
print parallel_solution(10, 2**19, 8) # 0.0616505777102
print parallel_solution_ver(10, 2**19, 8) # 0.0616505777102
loops sequential parallel parallel_ver
n = 1 0.000009s 0.001450s 0.001450s
n = 2 0.000016s 0.001435s 0.001435s
n = 4 0.000032s 0.001447s 0.001447s
n = 8 0.000063s 0.001454s 0.001454s
n = 16 0.000125s 0.001396s 0.001396s
n = 32 0.000251s 0.001389s 0.001389s
n = 64 0.000505s 0.001387s 0.001387s
n = 128 0.001016s 0.001360s 0.001360s
n = 256 0.002039s 0.001683s 0.001683s
n = 512 0.003846s 0.001844s 0.001844s
n = 1024 0.007717s 0.002416s 0.002416s
n = 2048 0.015395s 0.003575s 0.003575s
n = 4096 0.030817s 0.006055s 0.006055s
n = 8192 0.061689s 0.010820s 0.010820s
n = 16384 0.123445s 0.020872s 0.020872s
n = 32768 0.246928s 0.040165s 0.040165s
n = 65536 0.493903s 0.079077s 0.079077s
n = 131072 0.987832s 0.156176s 0.156176s
n = 262144 1.975107s 0.311151s 0.311151s
n = 524288 3.949421s 0.617181s 0.617181s