如何在 dlib 正面面部检测器中拆分级联级别?
How to split cascades levels in dlib frontal face detector?
我正在尝试将 dlib 正面面部检测器中的五级级联拆分为三级(正面,正面但向左旋转,正面但向右旋转)
Evgeniy suggested to split the detector in C++. I am not familiar with C++. When I look into frontal_face_detector.h, get_serialized_frontal_faces
returns 一个base64编码的对象。
我学会了如何将现有检测器保存到 .svm
文件中:
#include <dlib/image_processing/frontal_face_detector.h>
#include <iostream>
using namespace dlib;
using namespace std;
int main()
{
frontal_face_detector detector = get_frontal_face_detector();
dlib::serialize("new_detector.svm") << detector;
std::cout<<"End of the Program"<<endl;
return 0;
}
那么如何拆分级联并将新检测器保存到 .svm
文件?
在 frontal_face_detector.h 中,通过将金字塔级别从 <6> 降低到较低的值,检测器性能也会提高吗?
只需阅读 object detector documentation,您就会找到解释。
下面是将检测器拆分成多个部分、重建原始文件并限制金字塔级别的代码:
#include <dlib/image_processing/frontal_face_detector.h>
#include <iostream>
#include <string>
using namespace dlib;
using namespace std;
int main()
{
frontal_face_detector detector = get_frontal_face_detector();
dlib::serialize("current.svm") << detector;
std::vector<frontal_face_detector> parts;
// Split into parts and serialize to disk
for (unsigned long i = 0; i < detector.num_detectors(); ++i)
{
dlib::frontal_face_detector part(detector.get_scanner(), detector.get_overlap_tester(), detector.get_w(i));
dlib::serialize("part" + std::to_string(i) + ".svm") << part;
parts.push_back(part);
}
// Reconstruct original detector
frontal_face_detector reconstructed(parts);
dlib::serialize("reconstructed.svm") << reconstructed;
// Create detector that will work only on one level of pyramid
typedef dlib::scan_fhog_pyramid<dlib::pyramid_down<6> > image_scanner_type;
image_scanner_type scanner;
scanner.copy_configuration(detector.get_scanner());
scanner.set_max_pyramid_levels(1); //try setting to 2, 3...
frontal_face_detector one_level_detector = dlib::object_detector<image_scanner_type>(scanner, detector.get_overlap_tester(), detector.get_w());
std::cout<<"End of the Program"<<endl;
return 0;
}
并且不,将金字塔级别从 <6> 更改为任何其他值不会有太大帮助,因为 6 不是金字塔级别的限制,而是金字塔级别的比例金字塔尺度:
6 = 5/6
5 = 4/5
...
我正在尝试将 dlib 正面面部检测器中的五级级联拆分为三级(正面,正面但向左旋转,正面但向右旋转)
Evgeniy suggested to split the detector in C++. I am not familiar with C++. When I look into frontal_face_detector.h, get_serialized_frontal_faces
returns 一个base64编码的对象。
我学会了如何将现有检测器保存到 .svm
文件中:
#include <dlib/image_processing/frontal_face_detector.h>
#include <iostream>
using namespace dlib;
using namespace std;
int main()
{
frontal_face_detector detector = get_frontal_face_detector();
dlib::serialize("new_detector.svm") << detector;
std::cout<<"End of the Program"<<endl;
return 0;
}
那么如何拆分级联并将新检测器保存到 .svm
文件?
在 frontal_face_detector.h 中,通过将金字塔级别从 <6> 降低到较低的值,检测器性能也会提高吗?
只需阅读 object detector documentation,您就会找到解释。 下面是将检测器拆分成多个部分、重建原始文件并限制金字塔级别的代码:
#include <dlib/image_processing/frontal_face_detector.h>
#include <iostream>
#include <string>
using namespace dlib;
using namespace std;
int main()
{
frontal_face_detector detector = get_frontal_face_detector();
dlib::serialize("current.svm") << detector;
std::vector<frontal_face_detector> parts;
// Split into parts and serialize to disk
for (unsigned long i = 0; i < detector.num_detectors(); ++i)
{
dlib::frontal_face_detector part(detector.get_scanner(), detector.get_overlap_tester(), detector.get_w(i));
dlib::serialize("part" + std::to_string(i) + ".svm") << part;
parts.push_back(part);
}
// Reconstruct original detector
frontal_face_detector reconstructed(parts);
dlib::serialize("reconstructed.svm") << reconstructed;
// Create detector that will work only on one level of pyramid
typedef dlib::scan_fhog_pyramid<dlib::pyramid_down<6> > image_scanner_type;
image_scanner_type scanner;
scanner.copy_configuration(detector.get_scanner());
scanner.set_max_pyramid_levels(1); //try setting to 2, 3...
frontal_face_detector one_level_detector = dlib::object_detector<image_scanner_type>(scanner, detector.get_overlap_tester(), detector.get_w());
std::cout<<"End of the Program"<<endl;
return 0;
}
并且不,将金字塔级别从 <6> 更改为任何其他值不会有太大帮助,因为 6 不是金字塔级别的限制,而是金字塔级别的比例金字塔尺度:
6 = 5/6
5 = 4/5
...