如何使用相关或协方差矩阵而不是使用 R 的数据框来获得回归系数和模型拟合?

How to get regression coefficients and model fits using correlation or covariance matrix instead of data frame using R?

我希望能够通过提供相关性或协方差矩阵而不是 data.frame 来从多元线性回归中回归系数。我知道你丢失了一些与确定截距等相关的信息,但即使是相关矩阵也应该足以获得标准化系数和方差估计解释。

例如,如果您有以下数据

# get some data
library(MASS)
data("Cars93")
x <- Cars93[,c("EngineSize", "Horsepower", "RPM")]

您可以 运行 回归如下:

lm(EngineSize ~ Horsepower + RPM, x)

但是如果你没有数据而是相关矩阵或协方差矩阵会怎么样:

corx <- cor(x)
covx <- cov(x)

即,类似于:

lm(EngineSize ~ Horsepower + RPM, cov = covx) # obviously this doesn't work

请注意,Stats.SE 上的这个答案提供了为什么可能的理论解释,并提供了一些用于计算系数的自定义 R 代码的示例?

记住:

$beta=(X'X)^-1。 X'Y$

尝试:

(bs<-solve(covx[-1,-1],covx[-1,1]))

 Horsepower         RPM 
 0.01491908 -0.00100051 

对于截距,您需要变量的平均值。 例如:

  ms=colMeans(x)
  (b0=ms[1]-bs%*%ms[-1])

         [,1]
[1,] 5.805301

使用 lavaan,您可以执行以下操作:

library(MASS)
data("Cars93")
x <- Cars93[,c("EngineSize", "Horsepower", "RPM")]

lav.input<- cov(x)
lav.mean <- colMeans(x)

library(lavaan)
m1 <- 'EngineSize ~ Horsepower+RPM'
fit <- sem(m1, sample.cov = lav.input,sample.nobs = nrow(x), meanstructure = TRUE, sample.mean = lav.mean)
summary(fit, standardize=TRUE)

结果是:

Regressions:
                   Estimate    Std.Err  Z-value  P(>|z|)   Std.lv    Std.all
  EngineSize ~                                                              
    Horsepower          0.015    0.001   19.889    0.000      0.015    0.753
    RPM                -0.001    0.000  -15.197    0.000     -0.001   -0.576

Intercepts:
                  Estimate    Std.Err  Z-value  P(>|z|)   Std.lv    Std.all
   EngineSize          5.805    0.362   16.022    0.000      5.805    5.627

Variances:
                  Estimate    Std.Err  Z-value  P(>|z|)   Std.lv    Std.all
    EngineSize          0.142    0.021    6.819    0.000      0.142    0.133

我认为 lavaan 听起来是个不错的选择,我注意到@Philip 为我指出了正确的方向。我只是在这里提到如何使用 lavaan(特别是 r 平方和调整后的 r 平方)提取一些您可能需要的额外模型特征。

最新版本见:https://gist.github.com/jeromyanglim/9f766e030966eaa1241f10bd7d6e2812 :

# get data
library(MASS)
data("Cars93")
x <- Cars93[,c("EngineSize", "Horsepower", "RPM")]

# define sample statistics 
covx <- cov(x)
n <- nrow(x)
means <- sapply(x, mean) # this is optional


fit <- lavaan::sem("EngineSize ~ Horsepower + RPM", sample.cov = covx,
                   sample.mean = means,
                    sample.nobs = n)

coef(fit) # unstandardised coefficients
standardizedSolution(fit) # Standardised coefficients
inspect(fit, 'r2') # r-squared

# adjusted r-squared
adjr2 <- function(rsquared, n, p) 1 - (1-rsquared)  * ((n-1)/(n-p-1))
# update p below with number of predictor variables
adjr2(inspect(fit, 'r2'), n = inspect(fit, "nobs"), p = 2) 

自定义函数

这里有一些功能可以提供 lavaan 的合身度以及一些相关的功能(即,基本上包装了上述大部分功能)。它假设您没有办法的情况。

covlm <- function(dv, ivs, n, cov) {
    # Assumes lavaan package
    # library(lavaan)
    # dv: charcter vector of length 1 with name of outcome variable
    # ivs: character vector of names of predictors
    # n: numeric vector of length 1: sample size
    # cov: covariance matrix where row and column names 
    #       correspond to dv and ivs
    # Return
    #      list with lavaan model fit
    #      and various other features of the model

    results <- list()
    eq <- paste(dv, "~", paste(ivs, collapse = " + "))
    results$fit <- lavaan::sem(eq, sample.cov = cov,
                       sample.nobs = n)

    # coefficients
    ufit <- parameterestimates(results$fit) 
    ufit <- ufit[ufit$op == "~", ]
    results$coef <- ufit$est
    names(results$coef) <- ufit$rhs

    sfit <- standardizedsolution(results$fit) 
    sfit <- sfit[sfit$op == "~", ]
    results$standardizedcoef <- sfit$est.std
    names(results$standardizedcoef) <- sfit$rhs

    # use unclass to not limit r2 to 3 decimals
     results$r.squared <- unclass(inspect(results$fit, 'r2')) # r-squared

    # adjusted r-squared
      adjr2 <- function(rsquared, n, p) 1 - (1-rsquared)  * ((n-1)/(n-p-1))
    results$adj.r.squared <- adjr2(unclass(inspect(results$fit, 'r2')), 
                                n = n, p = length(ivs)) 
    results

}

例如:

x <- Cars93[,c("EngineSize", "Horsepower", "RPM")]
covlm(dv = "EngineSize", ivs = c("Horsepower", "RPM"),
      n = nrow(x), cov = cov(x))

这全部产生:

$fit
lavaan (0.5-20) converged normally after  27 iterations

  Number of observations                            93

  Estimator                                         ML
  Minimum Function Test Statistic                0.000
  Degrees of freedom                                 0
  Minimum Function Value               0.0000000000000

$coef
 Horsepower         RPM 
 0.01491908 -0.00100051 

$standardizedcoef
Horsepower        RPM 
 0.7532350 -0.5755326 

$r.squared
EngineSize 
     0.867 

$adj.r.squared
EngineSize 
     0.864 

另一种时髦的解决方案是生成一个与原始数据具有相同方差-协方差矩阵的数据集。您可以使用 MASS 包中的 mvrnorm() 来执行此操作。在这个新数据集上使用 lm() 将产生与原始数据集估计值相同的参数估计值和标准误差(截距除外,除非您知道每个变量的均值,否则无法访问截距)。这是一个示例:

#Assuming the variance covariance matrix is called VC
n <- 100 #sample size
nvar <- ncol(VC)
fake.data <- mvrnorm(n, mu = rep(0, nvar), sigma = VC, empirical = TRUE)
lm(Y~., data = fake.data)