Pandas:欧式date_range
Pandas: European style date_range
我正在尝试生成 date_range
欧洲风格 dd/mm/yyyy
import pandas as pd
rng = pd.date_range(start = '1/09/2016', periods = 10, dayfirst = True)
输出结果如下:
DatetimeIndex(['2016-01-09', '2016-01-10', '2016-01-11', '2016-01-12',
'2016-01-13', '2016-01-14', '2016-01-15', '2016-01-16',
'2016-01-17', '2016-01-18'],
dtype='datetime64[ns]', freq='D')
我在没有 dayfirst
参数的情况下得到相同的输出。
我做错了什么?
您只能使用 DatetimeIndex.strftime
,但丢失 DatetimeIndex
并获得 strings
的 list
:
print (rng.strftime('%d/%m/%Y'))
['09/01/2016' '10/01/2016' '11/01/2016' '12/01/2016' '13/01/2016'
'14/01/2016' '15/01/2016' '16/01/2016' '17/01/2016' '18/01/2016']
通过评论编辑:
如果需要每日频率,将参数freq
添加到date_range
and convert to_datetime
date
:
import pandas as pd
rng = pd.date_range(start = pd.to_datetime('1/09/2016', dayfirst = True),
periods = 10, freq = 'D')
print (rng)
DatetimeIndex(['2016-09-01', '2016-09-02', '2016-09-03', '2016-09-04',
'2016-09-05', '2016-09-06', '2016-09-07', '2016-09-08',
'2016-09-09', '2016-09-10'],
dtype='datetime64[ns]', freq='D')
我正在尝试生成 date_range
欧洲风格 dd/mm/yyyy
import pandas as pd
rng = pd.date_range(start = '1/09/2016', periods = 10, dayfirst = True)
输出结果如下:
DatetimeIndex(['2016-01-09', '2016-01-10', '2016-01-11', '2016-01-12',
'2016-01-13', '2016-01-14', '2016-01-15', '2016-01-16',
'2016-01-17', '2016-01-18'],
dtype='datetime64[ns]', freq='D')
我在没有 dayfirst
参数的情况下得到相同的输出。
我做错了什么?
您只能使用 DatetimeIndex.strftime
,但丢失 DatetimeIndex
并获得 strings
的 list
:
print (rng.strftime('%d/%m/%Y'))
['09/01/2016' '10/01/2016' '11/01/2016' '12/01/2016' '13/01/2016'
'14/01/2016' '15/01/2016' '16/01/2016' '17/01/2016' '18/01/2016']
通过评论编辑:
如果需要每日频率,将参数freq
添加到date_range
and convert to_datetime
date
:
import pandas as pd
rng = pd.date_range(start = pd.to_datetime('1/09/2016', dayfirst = True),
periods = 10, freq = 'D')
print (rng)
DatetimeIndex(['2016-09-01', '2016-09-02', '2016-09-03', '2016-09-04',
'2016-09-05', '2016-09-06', '2016-09-07', '2016-09-08',
'2016-09-09', '2016-09-10'],
dtype='datetime64[ns]', freq='D')