从 PySpark PipelineModel 中的各个阶段访问方法的任何方法?

Any way to access methods from individual stages in PySpark PipelineModel?

我创建了一个 PipelineModel 用于在 Spark 2.0 中执行 LDA(通过 PySpark API):

def create_lda_pipeline(minTokenLength=1, minDF=1, minTF=1, numTopics=10, seed=42, pattern='[\W]+'):
    """
    Create a pipeline for running an LDA model on a corpus. This function does not need data and will not actually do
    any fitting until invoked by the caller.
    Args:
        minTokenLength:
        minDF: minimum number of documents word is present in corpus
        minTF: minimum number of times word is found in a document
        numTopics:
        seed:
        pattern: regular expression to split words

    Returns:
        pipeline: class pyspark.ml.PipelineModel
    """
    reTokenizer = RegexTokenizer(inputCol="text", outputCol="tokens", pattern=pattern, minTokenLength=minTokenLength)
    cntVec = CountVectorizer(inputCol=reTokenizer.getOutputCol(), outputCol="vectors", minDF=minDF, minTF=minTF)
    lda = LDA(k=numTopics, seed=seed, optimizer="em", featuresCol=cntVec.getOutputCol())
    pipeline = Pipeline(stages=[reTokenizer, cntVec, lda])
    return pipeline

我想使用经过训练的模型和 LDAModel.logPerplexity() 方法来计算数据集的困惑度,因此我尝试了 运行 以下操作:

try:
    training = get_20_newsgroups_data(test_or_train='test')
    pipeline = create_lda_pipeline(numTopics=20, minDF=3, minTokenLength=5)
    model = pipeline.fit(training)  # train model on training data
    testing = get_20_newsgroups_data(test_or_train='test')
    perplexity = model.logPerplexity(testing)
    pprint(perplexity)

这只会导致以下 AttributeError

'PipelineModel' object has no attribute 'logPerplexity'

我明白为什么会出现这个错误,因为 logPerplexity 方法属于 LDAModel,而不属于 PipelineModel,但我想知道是否有办法从那个方法访问该方法舞台。

管道中的所有转换器都存储在stages 属性中。提取stages,取最后一个,就可以开始了:

model.stages[-1].logPerplexity(testing)

我遇到了 pipeline.stages 不起作用的问题 - pipeline.stages 被视为参数。 在这种情况下,使用

pipeline.getStages()

您将获得阶段列表,就像 pipeline.stages 在大多数情况下所做的那样。