crc32_combine() 矩阵技巧的逆运算是什么?
What is the inverse of crc32_combine()'s matrix trick?
zlib 的 crc32_combine() 采用 crcA、crcB 和 lengthB 来计算 crcAB。
# returns crcAB
crc32_combine(crcA, crcB, lenB)
使用 Mark Adler 的精彩帖子 here and here I was able to produce crc32_trim_trailing.pl 中的概念,它采用 crcAB、crcB 和 lengthB 来计算 crcA(我用它来剥离已知长度和值的填充)。
# prints crcA
perl crc32_trim_trailing.pl $crcAB $crcB $lenB
不幸的是,这使用了所描述的慢速方法的原理,其中必须一次剥离每个空字节。它很慢,但是是一个很好的概念证明。
我一直在努力制作 crc32_trim_trailing 的快速版本,它利用了 Mark 的帖子中描述的矩阵技巧,并为 zlib 的 crc32_combine() 中的组合用例实现。
这是我尝试 crc32_trim_trailing.c。
/* crc32_trim_trailing.c
This code is borrows heavily from crc32.c from zlib version 1.2.8, but has
been altered.
*/
#include <stdio.h>
#define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
/* ========================================================================= */
unsigned long gf2_matrix_times(mat, vec)
unsigned long *mat;
unsigned long vec;
{
unsigned long sum;
sum = 0;
while (vec) {
if (vec & 1)
sum ^= *mat;
vec >>= 1;
mat++;
}
return sum;
}
/* ========================================================================= */
void gf2_matrix_square(square, mat)
unsigned long *square;
unsigned long *mat;
{
int n;
for (n = 0; n < GF2_DIM; n++)
square[n] = gf2_matrix_times(mat, mat[n]);
}
/* ========================================================================= */
int main(int argc, char *argv[])
{
unsigned long crc1;
unsigned long crc2;
int len2;
sscanf(argv[1], "%lx", &crc1);
sscanf(argv[2], "%lx", &crc2);
sscanf(argv[3], "%d", &len2);
int n;
unsigned long row;
unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */
unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */
/* degenerate case (also disallow negative lengths) */
if (len2 <= 0)
return crc1;
/* get crcA0 */
crc1 ^= crc2;
/* put operator for one zero bit in odd */
odd[0] = 0x82608edbUL; /* used sage math to get inverse matrix polynomial */
row = 1;
for (n = 1; n < GF2_DIM; n++) {
odd[n] = row;
row <<= 1;
}
/* put operator for two zero bits in even */
gf2_matrix_square(even, odd);
/* put operator for four zero bits in odd */
gf2_matrix_square(odd, even);
/* apply len2 zeros to crc1 (first square will put the operator for one
zero byte, eight zero bits, in even) */
do {
/* apply zeros operator for this bit of len2 */
gf2_matrix_square(even, odd);
if (len2 & 1)
crc1 = gf2_matrix_times(even, crc1);
len2 >>= 1;
/* if no more bits set, then done */
if (len2 == 0)
break;
/* another iteration of the loop with odd and even swapped */
gf2_matrix_square(odd, even);
if (len2 & 1)
crc1 = gf2_matrix_times(odd, crc1);
len2 >>= 1;
/* if no more bits set, then done */
} while (len2 != 0);
printf("\nCRC: %lx\n", crc1);
return 0;
}
我将 xor 移动到矩阵乘法之前。这似乎没有问题,并通过对 crcAB 和 crcB 进行异或运算为我们提供了 crcA0。
接下来,使用 sage math,我找到了 crc32_combine() 中使用的初始矩阵的逆矩阵。
运行 这些矩阵中的每一个通过 3 个正方形得到矩阵 crc32_combine() 用于添加 1 个空字节 (matrixA) 和它的逆 (matrixB)。
使用 sage math 我确认了以下内容。
- 矩阵A * 矩阵B = 恒等式
- crc * identity = crc
- crc * matrixA * matrixB = crc
代码:
M = MatrixSpace(GF(2),32,32)
A = M([0,1,1,1,0,1,1,1,0,0,0,0,0,1,1,1,0,0,1,1,0,0,0,0,1,0,0,1,0,1,1,0,
1,1,1,0,1,1,1,0,0,0,0,0,1,1,1,0,0,1,1,0,0,0,0,1,0,0,1,0,1,1,0,0,
0,0,0,0,0,1,1,1,0,1,1,0,1,1,0,1,1,1,0,0,0,1,0,0,0,0,0,1,1,0,0,1,
0,0,0,0,1,1,1,0,1,1,0,1,1,0,1,1,1,0,0,0,1,0,0,0,0,0,1,1,0,0,1,0,
0,0,0,1,1,1,0,1,1,0,1,1,0,1,1,1,0,0,0,1,0,0,0,0,0,1,1,0,0,1,0,0,
0,0,1,1,1,0,1,1,0,1,1,0,1,1,1,0,0,0,1,0,0,0,0,0,1,1,0,0,1,0,0,0,
0,1,1,1,0,1,1,0,1,1,0,1,1,1,0,0,0,1,0,0,0,0,0,1,1,0,0,1,0,0,0,0,
1,1,1,0,1,1,0,1,1,0,1,1,1,0,0,0,1,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
B = A^-1
I = A*B
print "matrixA"
print A.str()
print "matrixB"
print B.str()
print "identity"
print I.str()
N = MatrixSpace(GF(2),1,32)
THIS=N([1,1,1,1,1,1,1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0,0,0,1,0,0,1,1,1])
print "'this' crc * identity"
print THIS * I
print "'this' crc * maxtrixA"
print THIS * A
print "'this' crc * maxtrixA * matrixB"
print THIS * A * B
输出:
matrixA
[0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0]
[1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 0]
[0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1]
[0 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0]
[0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0]
[0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0]
[0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0]
[1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
matrixB
[1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0]
[0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 1]
[1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 1 0]
[0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1]
[1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 0]
[0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1]
[1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0]
[1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
identity
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
'this' crc * identity
[1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1]
'this' crc * maxtrixA
[1 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1 0]
'this' crc * maxtrixA * matrixB
[1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1]
我使用 crc 和单位矩阵测试了 gf2_matrix_times(),正如预期的那样,crc 没有变化。
既然gf2_matrix_times(crc, matrixA)可以用来给crc加1个空字节,我本来希望gf2_matrix_times(crc, matrixB)可以用来去掉1个空字节。但是,这似乎不是开箱即用的。
此外,当 lengthB 为 1 时,sage 数学中的 crc * matrixA 产生的结果 (0xc05e2dda) 与 crc32_combine() 中的 crcA0 (0xa5f45be9) 不同。
为什么 sage math 和 gf2_matrix_times() 之间的 GF(2) 矩阵乘法存在差异?
为什么当matrixA和matrixB逆时gf2_matrix_times(crc, matrixB)不反转gf2_matrix_times(crc, matrixA)?
我们将从查看标准 CRC-32 的简单按位实现开始(作为 CRC 的独立定义,此例程 returns 初始 CRC,即 CRC空字符串,当 data
是 NULL
):
#include <stddef.h>
#include <stdint.h>
#define POLY 0xedb88320
uint32_t crc32(uint32_t crc, void const *data, size_t len) {
if (data == NULL)
return 0;
crc = ~crc;
while (len--) {
crc ^= *(unsigned char const *)data++;
for (int k = 0; k < 8; k++)
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
}
crc = ~crc;
return crc;
}
我们可以简化将 n
个零应用于 CRC:
uint32_t crc32_zeros(uint32_t crc, size_t n) {
crc = ~crc;
while (n--)
for (int k = 0; k < 8; k++)
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = ~crc;
return crc;
}
现在让我们仔细看看单零位在CRC中的应用:
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
应用位时可以采用两条路径。在最后一个操作中,要么多项式与 CRC 异或,要么不是。如果我们想扭转这一局面,我们想知道它的走向。
我们可以通过查看结果的高位来判断。我们可以看到,如果多项式不是异或,那么高位一定是0。但是如果是异或呢?那样的话,结果的高位就是POLY
的高位。我们可以看到高位是1。所以我们只看结果的高位就可以知道。事实上,任何有效的 CRC 多项式都必须是这种情况,因为所有的 x0 项的系数都是 1。 (该项在该反射多项式的高位。)
通过检查,我们可以轻松地反转该操作,其中 crc
进入是应用 0 位后的最终 CRC,而 crc
出来是应用 0 之前的 CRC位:
crc = crc & 0x80000000 ? ((crc ^ POLY) << 1) + 1 : crc << 1;
这将采用最终 CRC 并反转计算单个 0 位的 CRC 的操作。请注意,对于这种情况,我们必须插入会导致异或的低 1 位。
我们可以分解出 POLY
得到:
crc = crc & 0x80000000 ? (crc << 1) ^ ((POLY << 1) + 1) : crc << 1;
这与附加一个0位到非反射CRC的操作完全相同(POLY << 1) + 1
,这只是 POLY
向左旋转一位。
然后我们可以编写一个函数从标准 CRC-32 中删除 n
零字节:
#define UNPOLY ((POLY << 1) + 1)
uint32_t crc32_remove_zeros(uint32_t crc, size_t n) {
crc = ~crc;
while (n--)
for (int k = 0; k < 8; k++)
crc = crc & 0x80000000 ? (crc << 1) ^ UNPOLY : crc << 1;
crc = ~crc;
return crc;
}
现在我们可以使用与 zlib 中相同的方法,但使用非反射 CRC,编写一个函数来从 O 中的 CRC-32 中删除 n 个零(log(n)) 时间。我们不需要反转任何矩阵,因为我们已经反转了原始操作。
剩下的留作reader的练习。
zlib 的 crc32_combine() 采用 crcA、crcB 和 lengthB 来计算 crcAB。
# returns crcAB
crc32_combine(crcA, crcB, lenB)
使用 Mark Adler 的精彩帖子 here and here I was able to produce crc32_trim_trailing.pl 中的概念,它采用 crcAB、crcB 和 lengthB 来计算 crcA(我用它来剥离已知长度和值的填充)。
# prints crcA
perl crc32_trim_trailing.pl $crcAB $crcB $lenB
不幸的是,这使用了所描述的慢速方法的原理,其中必须一次剥离每个空字节。它很慢,但是是一个很好的概念证明。
我一直在努力制作 crc32_trim_trailing 的快速版本,它利用了 Mark 的帖子中描述的矩阵技巧,并为 zlib 的 crc32_combine() 中的组合用例实现。
这是我尝试 crc32_trim_trailing.c。
/* crc32_trim_trailing.c
This code is borrows heavily from crc32.c from zlib version 1.2.8, but has
been altered.
*/
#include <stdio.h>
#define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
/* ========================================================================= */
unsigned long gf2_matrix_times(mat, vec)
unsigned long *mat;
unsigned long vec;
{
unsigned long sum;
sum = 0;
while (vec) {
if (vec & 1)
sum ^= *mat;
vec >>= 1;
mat++;
}
return sum;
}
/* ========================================================================= */
void gf2_matrix_square(square, mat)
unsigned long *square;
unsigned long *mat;
{
int n;
for (n = 0; n < GF2_DIM; n++)
square[n] = gf2_matrix_times(mat, mat[n]);
}
/* ========================================================================= */
int main(int argc, char *argv[])
{
unsigned long crc1;
unsigned long crc2;
int len2;
sscanf(argv[1], "%lx", &crc1);
sscanf(argv[2], "%lx", &crc2);
sscanf(argv[3], "%d", &len2);
int n;
unsigned long row;
unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */
unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */
/* degenerate case (also disallow negative lengths) */
if (len2 <= 0)
return crc1;
/* get crcA0 */
crc1 ^= crc2;
/* put operator for one zero bit in odd */
odd[0] = 0x82608edbUL; /* used sage math to get inverse matrix polynomial */
row = 1;
for (n = 1; n < GF2_DIM; n++) {
odd[n] = row;
row <<= 1;
}
/* put operator for two zero bits in even */
gf2_matrix_square(even, odd);
/* put operator for four zero bits in odd */
gf2_matrix_square(odd, even);
/* apply len2 zeros to crc1 (first square will put the operator for one
zero byte, eight zero bits, in even) */
do {
/* apply zeros operator for this bit of len2 */
gf2_matrix_square(even, odd);
if (len2 & 1)
crc1 = gf2_matrix_times(even, crc1);
len2 >>= 1;
/* if no more bits set, then done */
if (len2 == 0)
break;
/* another iteration of the loop with odd and even swapped */
gf2_matrix_square(odd, even);
if (len2 & 1)
crc1 = gf2_matrix_times(odd, crc1);
len2 >>= 1;
/* if no more bits set, then done */
} while (len2 != 0);
printf("\nCRC: %lx\n", crc1);
return 0;
}
我将 xor 移动到矩阵乘法之前。这似乎没有问题,并通过对 crcAB 和 crcB 进行异或运算为我们提供了 crcA0。
接下来,使用 sage math,我找到了 crc32_combine() 中使用的初始矩阵的逆矩阵。
运行 这些矩阵中的每一个通过 3 个正方形得到矩阵 crc32_combine() 用于添加 1 个空字节 (matrixA) 和它的逆 (matrixB)。
使用 sage math 我确认了以下内容。
- 矩阵A * 矩阵B = 恒等式
- crc * identity = crc
- crc * matrixA * matrixB = crc
代码:
M = MatrixSpace(GF(2),32,32)
A = M([0,1,1,1,0,1,1,1,0,0,0,0,0,1,1,1,0,0,1,1,0,0,0,0,1,0,0,1,0,1,1,0,
1,1,1,0,1,1,1,0,0,0,0,0,1,1,1,0,0,1,1,0,0,0,0,1,0,0,1,0,1,1,0,0,
0,0,0,0,0,1,1,1,0,1,1,0,1,1,0,1,1,1,0,0,0,1,0,0,0,0,0,1,1,0,0,1,
0,0,0,0,1,1,1,0,1,1,0,1,1,0,1,1,1,0,0,0,1,0,0,0,0,0,1,1,0,0,1,0,
0,0,0,1,1,1,0,1,1,0,1,1,0,1,1,1,0,0,0,1,0,0,0,0,0,1,1,0,0,1,0,0,
0,0,1,1,1,0,1,1,0,1,1,0,1,1,1,0,0,0,1,0,0,0,0,0,1,1,0,0,1,0,0,0,
0,1,1,1,0,1,1,0,1,1,0,1,1,1,0,0,0,1,0,0,0,0,0,1,1,0,0,1,0,0,0,0,
1,1,1,0,1,1,0,1,1,0,1,1,1,0,0,0,1,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
B = A^-1
I = A*B
print "matrixA"
print A.str()
print "matrixB"
print B.str()
print "identity"
print I.str()
N = MatrixSpace(GF(2),1,32)
THIS=N([1,1,1,1,1,1,1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0,0,0,1,0,0,1,1,1])
print "'this' crc * identity"
print THIS * I
print "'this' crc * maxtrixA"
print THIS * A
print "'this' crc * maxtrixA * matrixB"
print THIS * A * B
输出:
matrixA
[0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0]
[1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 0]
[0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1]
[0 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0]
[0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0]
[0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0]
[0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0]
[1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
matrixB
[1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0]
[0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 1]
[1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 1 0]
[0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1]
[1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 0]
[0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1]
[1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0]
[1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
identity
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
'this' crc * identity
[1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1]
'this' crc * maxtrixA
[1 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1 0]
'this' crc * maxtrixA * matrixB
[1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1]
我使用 crc 和单位矩阵测试了 gf2_matrix_times(),正如预期的那样,crc 没有变化。
既然gf2_matrix_times(crc, matrixA)可以用来给crc加1个空字节,我本来希望gf2_matrix_times(crc, matrixB)可以用来去掉1个空字节。但是,这似乎不是开箱即用的。
此外,当 lengthB 为 1 时,sage 数学中的 crc * matrixA 产生的结果 (0xc05e2dda) 与 crc32_combine() 中的 crcA0 (0xa5f45be9) 不同。
为什么 sage math 和 gf2_matrix_times() 之间的 GF(2) 矩阵乘法存在差异? 为什么当matrixA和matrixB逆时gf2_matrix_times(crc, matrixB)不反转gf2_matrix_times(crc, matrixA)?
我们将从查看标准 CRC-32 的简单按位实现开始(作为 CRC 的独立定义,此例程 returns 初始 CRC,即 CRC空字符串,当 data
是 NULL
):
#include <stddef.h>
#include <stdint.h>
#define POLY 0xedb88320
uint32_t crc32(uint32_t crc, void const *data, size_t len) {
if (data == NULL)
return 0;
crc = ~crc;
while (len--) {
crc ^= *(unsigned char const *)data++;
for (int k = 0; k < 8; k++)
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
}
crc = ~crc;
return crc;
}
我们可以简化将 n
个零应用于 CRC:
uint32_t crc32_zeros(uint32_t crc, size_t n) {
crc = ~crc;
while (n--)
for (int k = 0; k < 8; k++)
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = ~crc;
return crc;
}
现在让我们仔细看看单零位在CRC中的应用:
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
应用位时可以采用两条路径。在最后一个操作中,要么多项式与 CRC 异或,要么不是。如果我们想扭转这一局面,我们想知道它的走向。
我们可以通过查看结果的高位来判断。我们可以看到,如果多项式不是异或,那么高位一定是0。但是如果是异或呢?那样的话,结果的高位就是POLY
的高位。我们可以看到高位是1。所以我们只看结果的高位就可以知道。事实上,任何有效的 CRC 多项式都必须是这种情况,因为所有的 x0 项的系数都是 1。 (该项在该反射多项式的高位。)
通过检查,我们可以轻松地反转该操作,其中 crc
进入是应用 0 位后的最终 CRC,而 crc
出来是应用 0 之前的 CRC位:
crc = crc & 0x80000000 ? ((crc ^ POLY) << 1) + 1 : crc << 1;
这将采用最终 CRC 并反转计算单个 0 位的 CRC 的操作。请注意,对于这种情况,我们必须插入会导致异或的低 1 位。
我们可以分解出 POLY
得到:
crc = crc & 0x80000000 ? (crc << 1) ^ ((POLY << 1) + 1) : crc << 1;
这与附加一个0位到非反射CRC的操作完全相同(POLY << 1) + 1
,这只是 POLY
向左旋转一位。
然后我们可以编写一个函数从标准 CRC-32 中删除 n
零字节:
#define UNPOLY ((POLY << 1) + 1)
uint32_t crc32_remove_zeros(uint32_t crc, size_t n) {
crc = ~crc;
while (n--)
for (int k = 0; k < 8; k++)
crc = crc & 0x80000000 ? (crc << 1) ^ UNPOLY : crc << 1;
crc = ~crc;
return crc;
}
现在我们可以使用与 zlib 中相同的方法,但使用非反射 CRC,编写一个函数来从 O 中的 CRC-32 中删除 n 个零(log(n)) 时间。我们不需要反转任何矩阵,因为我们已经反转了原始操作。
剩下的留作reader的练习。