R中SVM-RFE算法的实现
Implementation of SVM-RFE Algorithm in R
我正在使用 R 代码来实现此来源 SVM-RFE
的算法 http://www.uccor.edu.ar/paginas/seminarios/Software/SVM_RFE_R_implementation.pdf 但我做了一个小修改,以便 r 代码使用 gnum
库。代码如下:
svmrfeFeatureRanking = function(x,y){
n = ncol(x)
survivingFeaturesIndexes = seq(1:n)
featureRankedList = vector(length=n)
rankedFeatureIndex = n
while(length(survivingFeaturesIndexes)>0){
#train the support vector machine
svmModel = SVM(x[, survivingFeaturesIndexes], y, C = 10, cache_size=500,kernel="linear" )
#compute ranking criteria
rankingCriteria = svmModel$w * svmModel$w
#rank the features
ranking = sort(rankingCriteria, index.return = TRUE)$ix
#update feature ranked list
featureRankedList[rankedFeatureIndex] = survivingFeaturesIndexes[ranking[1]]
rankedFeatureIndex = rankedFeatureIndex - 1
#eliminate the feature with smallest ranking criterion
(survivingFeaturesIndexes = survivingFeaturesIndexes[-ranking[1]])
}
return (featureRankedList)
}
该函数接收 matrix
作为 x
的 input
和 factor
作为 y
的 input
。我将该函数用于某些数据,但在最后一次迭代中收到以下错误消息:
Error in if (nrow(x) != length(y)) { : argument is of length zero
调试代码,我得到了这个:
3 SVM.default(x[, survivingFeaturesIndexes], y, C = 10, cache_size = 500,
kernel = "linear")
2 SVM(x[, survivingFeaturesIndexes], y, C = 10, cache_size = 500,
kernel = "linear")
1 svmrfeFeatureRanking(sdatx, ym)
那么,函数的错误是什么?
当只剩下一个特征时,您的矩阵似乎已转换为列表。试试这个:
svmModel = SVM(as.matrix(x[, survivingFeaturesIndexes]), y, C = 10, cache_size=500,kernel="linear" )
我正在使用 R 代码来实现此来源 SVM-RFE
的算法 http://www.uccor.edu.ar/paginas/seminarios/Software/SVM_RFE_R_implementation.pdf 但我做了一个小修改,以便 r 代码使用 gnum
库。代码如下:
svmrfeFeatureRanking = function(x,y){
n = ncol(x)
survivingFeaturesIndexes = seq(1:n)
featureRankedList = vector(length=n)
rankedFeatureIndex = n
while(length(survivingFeaturesIndexes)>0){
#train the support vector machine
svmModel = SVM(x[, survivingFeaturesIndexes], y, C = 10, cache_size=500,kernel="linear" )
#compute ranking criteria
rankingCriteria = svmModel$w * svmModel$w
#rank the features
ranking = sort(rankingCriteria, index.return = TRUE)$ix
#update feature ranked list
featureRankedList[rankedFeatureIndex] = survivingFeaturesIndexes[ranking[1]]
rankedFeatureIndex = rankedFeatureIndex - 1
#eliminate the feature with smallest ranking criterion
(survivingFeaturesIndexes = survivingFeaturesIndexes[-ranking[1]])
}
return (featureRankedList)
}
该函数接收 matrix
作为 x
的 input
和 factor
作为 y
的 input
。我将该函数用于某些数据,但在最后一次迭代中收到以下错误消息:
Error in if (nrow(x) != length(y)) { : argument is of length zero
调试代码,我得到了这个:
3 SVM.default(x[, survivingFeaturesIndexes], y, C = 10, cache_size = 500,
kernel = "linear")
2 SVM(x[, survivingFeaturesIndexes], y, C = 10, cache_size = 500,
kernel = "linear")
1 svmrfeFeatureRanking(sdatx, ym)
那么,函数的错误是什么?
当只剩下一个特征时,您的矩阵似乎已转换为列表。试试这个:
svmModel = SVM(as.matrix(x[, survivingFeaturesIndexes]), y, C = 10, cache_size=500,kernel="linear" )