通过 r 中的线性插值查找值

Finding values by linear interpolation in r

我有大量数据需要找到标准高度的几个变量的值。 我想对 Height=c(0,100,200,250,400,500) 处的其他变量的值进行线性插值,并将它们作为新列添加到现有数据中。这是我尝试获取一个变量的值作为标准 Height=c(0,100,200,250,400,500)。这仅适用于一个变量:

data2<-approx(data2$Height,data2$ozone,xout=c(0,100,200,250,400,500))

预期结果应该是一个18行4列的数据框。

这是示例数据(data2):

  ozone     Height      Temp        Wind
23.224833   0.000000    253.005798  3.631531
23.750044   35.218689   253.299332  5.178889
24.589071   70.661133   253.538574  6.892455
25.619747   106.267334  253.492661  8.050934
26.443541   142.014648  253.279053  8.648781
27.235945   213.897034  252.815262  9.263882
27.698713   286.280518  252.10556   9.269853
27.865248   359.172363  251.390045  9.3006
28.361752   432.788086  251.379913  8.90488
30.279163   507.276733  251.849655  7.817647
23.048151   0.000000    251.528275  4.174027
23.477306   34.998413   251.6698    5.630364
24.16725    70.187622   251.759369  7.237537
25.239206   105.544006  251.744934  8.859097
26.319073   141.05011   251.601654  9.928196
27.409718   212.47052   251.214279  10.75243
27.825275   284.45282   250.738007  10.812123
28.214966   357.184631  250.87706   9.980968
29.726873   430.919983  251.84964   9.139032
32.482925   505.574097  252.471924  8.063484
22.369734   0.000000    250.876144  3.82036
22.916582   34.908447   251.044205  5.281044
23.732521   70.014038   251.170456  6.970277
24.998178   105.296021  251.221603  8.801399
26.30809    140.736084  251.133591  10.039667
27.572966   212.052795  250.852631  11.118568
28.233795   283.998474  250.61908   10.677624
29.079391   356.812012  251.179962  9.466641
31.244007   430.597534  252.042175  9.016301
33.636559   505.305542  252.659393  8.103294

提前感谢您的帮助。

更新

这是想要的答案:

 Height    ozone     Temp      Wind
       0 23.22483 253.0058  3.631531
     100 25.43833 253.5007  7.847021
     200 27.08275 252.9049  9.144964
     300 27.73006 251.9709  9.275640
     400 28.14061 251.3844  9.081132
     500 30.09185 251.8038  7.923858
       0 23.04815 251.5283  4.174027
     100 25.07112 251.7472  8.604831
     200 27.21928 251.2819 10.608513
     300 27.90858 250.7677 10.634455
     400 29.09287 251.4418  9.492087
     500 32.27714 252.4255  8.143790
     0   22.36973 250.8761  3.820360
     100 24.80820 251.2139  8.526537
     200 27.35920 250.9001 10.936230
     300 28.41962 250.7423 10.411498
     400 30.34638 251.6846  9.203049
     500 33.46665 252.6156  8.168133

您只需使用 lapply 浏览列。另外,您不能将内插值附加到 data2data2 有 30 行,而 xout 的长度为 6。您需要另一个数据框来保存插值结果。

cbind.data.frame(data.frame(Height = 0:5 * 100),
                 lapply(data2[-2], function (u) approx(data2[[2]], u, 0:5 * 100)$y))

#  Height    ozone     Temp      Wind
#1      0 22.88091 251.8034  3.875306
#2    100 24.93562 251.5759  8.509502
#3    200 27.37860 251.2702 10.693545
#4    300 27.96728 251.9255  9.308131
#5    400 29.79659 251.7628  9.138091
#6    500 33.25064 252.5658  8.161940

跟进

The original data is model output for 3 days, and I want to keep it to some standard heights for comparing with other data. So each data frame represents one-day data. So I merge them in one big data frame data2, with the same height as the other variables vary each day.

好的,你的data2有时间属性,每10行对应一天的数据。好吧,您不应该逐行堆叠不同日期的数据。如果这样做,您应该添加一个新列,比如 day 以突出显示这种块/组结构。

所以,你真正需要的是对每个数据进行独立的线性插值。我最初的答案是使用所有三天的数据进行统一插值。由于您在 Height 上绑定了值,它实际上是在 3 天内对 ozoneTempWind 的平均值进行插值。以下代码可以满足您的期望。

## change my previous code to a function
result_per_day <- function (dat) {
  cbind.data.frame(data.frame(Height = 0:5 * 100),
                   lapply(dat[-2], function (u) approx(dat[[2]], u, 0:5 * 100)$y))
  }

datalst <- split(data2, gl(3, 10, labels = 1:3))
do.call(rbind.data.frame, lapply(datalst, result_per_day))

#    Height    ozone     Temp      Wind
#1.1      0 23.22483 253.0058  3.631531
#1.2    100 25.43833 253.5007  7.847021
#1.3    200 27.08275 252.9049  9.144964
#1.4    300 27.73006 251.9709  9.275640
#1.5    400 28.14061 251.3844  9.081132
#1.6    500 30.09185 251.8038  7.923858
#2.1      0 23.04815 251.5283  4.174027
#2.2    100 25.07112 251.7472  8.604831
#2.3    200 27.21928 251.2819 10.608513
#2.4    300 27.90858 250.7677 10.634455
#2.5    400 29.09287 251.4418  9.492087
#2.6    500 32.27714 252.4255  8.143790
#3.1      0 22.36973 250.8761  3.820360
#3.2    100 24.80820 251.2139  8.526537
#3.3    200 27.35920 250.9001 10.936230
#3.4    300 28.41962 250.7423 10.411498
#3.5    400 30.34638 251.6846  9.203049
#3.6    500 33.46665 252.6156  8.168133

这个最终数据框的行名非常具有解释性。 "1.1""1.6" 是第 1 天,而 "2.1""2.6" 是第 2 天,依此类推。