带有插入符号 r 的错误调整自定义算法
error tuning custom algorithm with caret r
我想用插入符号调整自定义算法的两个参数。 Un 参数 (lambda) 是数字,另一个参数 (prior) 是字符。此参数可以取两个值 "known" 或 "unknown"。我只用 lambda 参数调整了算法。没关系。但是当我添加字符参数(之前)时出现以下错误:
1: In eval(expr, envir, enclos) : model fit failed for Resample01:
lambda=1, prior=unknown Error in mdp(Class = y, data = x, lambda =
param$lambda, prior = param$prior, : object 'assignment' not found
错误必须与指定字符参数的方式有关(先前)。这是我的代码:
my_mod$parameters <- data.frame(
parameter = c("lambda","prior"),
class = c("numeric", "character"),
label = c("sample_length", "prior_type"))
## The grid Element
my_mod$grid <- function(x, y, len = NULL){expand.grid(lambda=1:2,prior=c("unknown", "known"))}
mygrid<-expand.grid(lambda=1:2,prior=c('unknown','known'))
## The fit Element
my_mod$fit <- function(x, y, wts, param, lev, last, classProbs, ...){
mdp(Class=y,data=x,lambda=param$lambda,prior=param$prior,info.pred ="yes")
}
## The predict Element
mdpPred <- function(modelFit, newdata, preProc = NULL, submodels = NULL)
predict.mdp(modelFit, newdata)
my_mod$predict <- mdpPred
fitControl <- trainControl(method = "cv",number = 5,repeats = 5)
train(x=data, y = factor(Class),method = my_mod,trControl = fitControl, tuneGrid = mygrid)
那是因为你必须在拟合函数中指定as.character(param$prior)
。
我想用插入符号调整自定义算法的两个参数。 Un 参数 (lambda) 是数字,另一个参数 (prior) 是字符。此参数可以取两个值 "known" 或 "unknown"。我只用 lambda 参数调整了算法。没关系。但是当我添加字符参数(之前)时出现以下错误:
1: In eval(expr, envir, enclos) : model fit failed for Resample01: lambda=1, prior=unknown Error in mdp(Class = y, data = x, lambda = param$lambda, prior = param$prior, : object 'assignment' not found
错误必须与指定字符参数的方式有关(先前)。这是我的代码:
my_mod$parameters <- data.frame(
parameter = c("lambda","prior"),
class = c("numeric", "character"),
label = c("sample_length", "prior_type"))
## The grid Element
my_mod$grid <- function(x, y, len = NULL){expand.grid(lambda=1:2,prior=c("unknown", "known"))}
mygrid<-expand.grid(lambda=1:2,prior=c('unknown','known'))
## The fit Element
my_mod$fit <- function(x, y, wts, param, lev, last, classProbs, ...){
mdp(Class=y,data=x,lambda=param$lambda,prior=param$prior,info.pred ="yes")
}
## The predict Element
mdpPred <- function(modelFit, newdata, preProc = NULL, submodels = NULL)
predict.mdp(modelFit, newdata)
my_mod$predict <- mdpPred
fitControl <- trainControl(method = "cv",number = 5,repeats = 5)
train(x=data, y = factor(Class),method = my_mod,trControl = fitControl, tuneGrid = mygrid)
那是因为你必须在拟合函数中指定as.character(param$prior)
。