cublas 中是否有可以将 sigmoid 函数应用于向量的函数?
Is there a function in the cublas that can apply the sigmoid function with a vector?
正如标题所说,我想在 vector 中做 element-wise 操作 function.I 想知道 cublas 库中是否有任何函数可以做到这一点?
我不知道可以协助完成任务的合适 CUBLAS 函数。但是,您可以轻松编写自己的代码,将 sigmoid 函数或与此相关的任何其他单参数函数逐元素应用于向量。请注意,在大多数情况下,此类代码将受内存限制而不是计算限制。请参阅下面的 CUDA 程序以获取有效示例,特别是 sigmoid_kernel()
。该程序的输出应如下所示:
source[0]= 0.0000000000000000e+000 source[99999]= 9.9999000000000005e-001
result[0]= 5.0000000000000000e-001 result[99999]= 7.3105661250612963e-001
.
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#define DEFAULT_LEN 100000
// Macro to catch CUDA errors in CUDA runtime calls
#define CUDA_SAFE_CALL(call) \
do { \
cudaError_t err = call; \
if (cudaSuccess != err) { \
fprintf (stderr, "Cuda error in file '%s' in line %i : %s.\n",\
__FILE__, __LINE__, cudaGetErrorString(err) ); \
exit(EXIT_FAILURE); \
} \
} while (0)
// Macro to catch CUDA errors in kernel launches
#define CHECK_LAUNCH_ERROR() \
do { \
/* Check synchronous errors, i.e. pre-launch */ \
cudaError_t err = cudaGetLastError(); \
if (cudaSuccess != err) { \
fprintf (stderr, "Cuda error in file '%s' in line %i : %s.\n",\
__FILE__, __LINE__, cudaGetErrorString(err) ); \
exit(EXIT_FAILURE); \
} \
/* Check asynchronous errors, i.e. kernel failed (ULF) */ \
err = cudaThreadSynchronize(); \
if (cudaSuccess != err) { \
fprintf (stderr, "Cuda error in file '%s' in line %i : %s.\n",\
__FILE__, __LINE__, cudaGetErrorString( err) ); \
exit(EXIT_FAILURE); \
} \
} while (0)
__device__ __forceinline__ double sigmoid (double a)
{
return 1.0 / (1.0 + exp (-a));
}
__global__ void sigmoid_kernel (const double * __restrict__ src,
double * __restrict__ dst, int len)
{
int stride = gridDim.x * blockDim.x;
int tid = blockDim.x * blockIdx.x + threadIdx.x;
for (int i = tid; i < len; i += stride) {
dst[i] = sigmoid (src[i]);
}
}
int main (void)
{
double *source, *result;
double *d_a = 0, *d_b = 0;
int len = DEFAULT_LEN;
/* Allocate memory on host */
source = (double *)malloc (len * sizeof (source[0]));
if (!source) return EXIT_FAILURE;
result = (double *)malloc (len * sizeof (result[0]));
if (!result) return EXIT_FAILURE;
/* create source data */
for (int i = 0; i < len; i++) source [i] = i * 1e-5;
/* spot check of source data */
printf ("source[0]=% 23.16e source[%d]=% 23.16e\n",
source[0], len-1, source[len-1]);
/* Allocate memory on device */
CUDA_SAFE_CALL (cudaMalloc((void**)&d_a, sizeof(d_a[0]) * len));
CUDA_SAFE_CALL (cudaMalloc((void**)&d_b, sizeof(d_b[0]) * len));
/* Push source data to device */
CUDA_SAFE_CALL (cudaMemcpy (d_a, source, sizeof(d_a[0]) * len,
cudaMemcpyHostToDevice));
/* Compute execution configuration */
dim3 dimBlock(256);
int threadBlocks = (len + (dimBlock.x - 1)) / dimBlock.x;
if (threadBlocks > 65520) threadBlocks = 65520;
dim3 dimGrid(threadBlocks);
sigmoid_kernel<<<dimGrid,dimBlock>>>(d_a, d_b, len);
CHECK_LAUNCH_ERROR();
/* retrieve results from device */
CUDA_SAFE_CALL (cudaMemcpy (result, d_b, sizeof (result[0]) * len,
cudaMemcpyDeviceToHost));
/* spot check of results */
printf ("result[0]=% 23.16e result[%d]=% 23.16e\n",
result[0], len-1, result[len-1]);
/* free memory on host and device */
CUDA_SAFE_CALL (cudaFree(d_a));
CUDA_SAFE_CALL (cudaFree(d_b));
free (result);
free (source);
return EXIT_SUCCESS;
}
正如标题所说,我想在 vector 中做 element-wise 操作 function.I 想知道 cublas 库中是否有任何函数可以做到这一点?
我不知道可以协助完成任务的合适 CUBLAS 函数。但是,您可以轻松编写自己的代码,将 sigmoid 函数或与此相关的任何其他单参数函数逐元素应用于向量。请注意,在大多数情况下,此类代码将受内存限制而不是计算限制。请参阅下面的 CUDA 程序以获取有效示例,特别是 sigmoid_kernel()
。该程序的输出应如下所示:
source[0]= 0.0000000000000000e+000 source[99999]= 9.9999000000000005e-001
result[0]= 5.0000000000000000e-001 result[99999]= 7.3105661250612963e-001
.
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#define DEFAULT_LEN 100000
// Macro to catch CUDA errors in CUDA runtime calls
#define CUDA_SAFE_CALL(call) \
do { \
cudaError_t err = call; \
if (cudaSuccess != err) { \
fprintf (stderr, "Cuda error in file '%s' in line %i : %s.\n",\
__FILE__, __LINE__, cudaGetErrorString(err) ); \
exit(EXIT_FAILURE); \
} \
} while (0)
// Macro to catch CUDA errors in kernel launches
#define CHECK_LAUNCH_ERROR() \
do { \
/* Check synchronous errors, i.e. pre-launch */ \
cudaError_t err = cudaGetLastError(); \
if (cudaSuccess != err) { \
fprintf (stderr, "Cuda error in file '%s' in line %i : %s.\n",\
__FILE__, __LINE__, cudaGetErrorString(err) ); \
exit(EXIT_FAILURE); \
} \
/* Check asynchronous errors, i.e. kernel failed (ULF) */ \
err = cudaThreadSynchronize(); \
if (cudaSuccess != err) { \
fprintf (stderr, "Cuda error in file '%s' in line %i : %s.\n",\
__FILE__, __LINE__, cudaGetErrorString( err) ); \
exit(EXIT_FAILURE); \
} \
} while (0)
__device__ __forceinline__ double sigmoid (double a)
{
return 1.0 / (1.0 + exp (-a));
}
__global__ void sigmoid_kernel (const double * __restrict__ src,
double * __restrict__ dst, int len)
{
int stride = gridDim.x * blockDim.x;
int tid = blockDim.x * blockIdx.x + threadIdx.x;
for (int i = tid; i < len; i += stride) {
dst[i] = sigmoid (src[i]);
}
}
int main (void)
{
double *source, *result;
double *d_a = 0, *d_b = 0;
int len = DEFAULT_LEN;
/* Allocate memory on host */
source = (double *)malloc (len * sizeof (source[0]));
if (!source) return EXIT_FAILURE;
result = (double *)malloc (len * sizeof (result[0]));
if (!result) return EXIT_FAILURE;
/* create source data */
for (int i = 0; i < len; i++) source [i] = i * 1e-5;
/* spot check of source data */
printf ("source[0]=% 23.16e source[%d]=% 23.16e\n",
source[0], len-1, source[len-1]);
/* Allocate memory on device */
CUDA_SAFE_CALL (cudaMalloc((void**)&d_a, sizeof(d_a[0]) * len));
CUDA_SAFE_CALL (cudaMalloc((void**)&d_b, sizeof(d_b[0]) * len));
/* Push source data to device */
CUDA_SAFE_CALL (cudaMemcpy (d_a, source, sizeof(d_a[0]) * len,
cudaMemcpyHostToDevice));
/* Compute execution configuration */
dim3 dimBlock(256);
int threadBlocks = (len + (dimBlock.x - 1)) / dimBlock.x;
if (threadBlocks > 65520) threadBlocks = 65520;
dim3 dimGrid(threadBlocks);
sigmoid_kernel<<<dimGrid,dimBlock>>>(d_a, d_b, len);
CHECK_LAUNCH_ERROR();
/* retrieve results from device */
CUDA_SAFE_CALL (cudaMemcpy (result, d_b, sizeof (result[0]) * len,
cudaMemcpyDeviceToHost));
/* spot check of results */
printf ("result[0]=% 23.16e result[%d]=% 23.16e\n",
result[0], len-1, result[len-1]);
/* free memory on host and device */
CUDA_SAFE_CALL (cudaFree(d_a));
CUDA_SAFE_CALL (cudaFree(d_b));
free (result);
free (source);
return EXIT_SUCCESS;
}