如何刷新 PYQT4 中嵌入的 MatPlotlib?
How do I refresh MatPlotlib embedded in PYQT4?
我正在尝试在选择新数据时重绘 PYQT 嵌入式 Matplotlib 绘图。它完美地绘制了第一个图。我尝试了很多我在网上看到的东西的变体,但都无济于事。任何帮助深表感谢。
def mpl_plot(self, plot_page, replot = 0): #Data stored in lists
if plot_page == 1: #Plot 1st Page
plt = self.mplwidget.axes
fig = self.mplwidget.figure #Add a figure
if plot_page == 2: #Plot 2nd Page
plt = self.mplwidget_2.axes
fig = self.mplwidget_2.figure #Add a figure
if plot_page == 3: #Plot 3rd Page
plt = self.mplwidget_3.axes
fig = self.mplwidget_3.figure #Add a figure
par1 = fig.add_subplot(1,1,1)
par2 = fig.add_subplot(1,1,1)
#Add Axes
ax1 = par1.twinx()
ax2 = par2.twinx()
ax2.spines["right"].set_position(("outward", 25))
self.make_patch_spines_invisible(ax2)
ax2.spines["right"].set_visible(True)
impeller = str(self.comboBox_impellers.currentText()) #Get Impeller
fac_curves = self.mpl_factory_specs(impeller)
fac_lift = fac_curves[0]
fac_power = fac_curves[1]
fac_flow = fac_curves[2]
fac_eff = fac_curves[3]
fac_max_eff = fac_curves[4]
fac_max_eff_bpd = fac_curves[5]
fac_ranges = self.mpl_factory_ranges()
min_range = fac_ranges[0]
max_range = fac_ranges[1]
#Plot Chart
plt.hold(True) #Has to be included for multiple curves
plt.plot(fac_flow, fac_lift, 'b', linestyle = "dashed", linewidth = 1)
#plt.plot(flow,f_lift,'b.') #Plot datapoints only
#Plot Factory Power
ax1.plot(fac_flow, fac_power, 'r', linestyle = "dashed", linewidth = 1)
#ax1.plot(flow,f_power,'r.') #Plot datapoints only
ax2.plot(fac_flow, fac_eff, 'g', linestyle = "dashed", linewidth = 1)
#Plot x axis minor tick marks
minorLocatorx = AutoMinorLocator()
ax1.xaxis.set_minor_locator(minorLocatorx)
ax1.tick_params(which='both', width= 0.5)
ax1.tick_params(which='major', length=7)
ax1.tick_params(which='minor', length=4, color='k')
#Plot y axis minor tick marks
minorLocatory = AutoMinorLocator()
plt.yaxis.set_minor_locator(minorLocatory)
plt.tick_params(which='both', width= 0.5)
plt.tick_params(which='major', length=7)
plt.tick_params(which='minor', length=4, color='k')
#Make Border of Chart White
#Plot Grid
plt.grid(b=True, which='both', color='k', linestyle='-')
#set shaded Area
plt.axvspan(min_range, max_range, facecolor='#9BE2FA', alpha=0.5) #Yellow rectangular shaded area
#Set Vertical Lines
plt.axvline(fac_max_eff_bpd, color = '#69767A')
bep = fac_max_eff * 0.90
bep_corrected = bep * 0.90
ax2.annotate('BEP', xy=(fac_max_eff_bpd, bep_corrected), xycoords='data',
xytext=(-50, 30), textcoords='offset points',
bbox=dict(boxstyle="round", fc="0.8"),
arrowprops=dict(arrowstyle="-|>",
shrinkA=0, shrinkB=10,
connectionstyle="angle,angleA=0,angleB=90,rad=10"),
)
#Set Scales
plt.set_ylim(0,max(fac_lift) + (max(fac_lift) * 0.40)) #Pressure
#plt.set_xlim(0,max(fac_flow))
ax1.set_ylim(0,max(fac_power) + (max(fac_power) * 0.40)) #Power
ax2.set_ylim(0,max(fac_eff) + (max(fac_eff) * 0.40)) #Effiency
# Set Axes Colors
plt.tick_params(axis='y', colors='b')
ax1.tick_params(axis='y', colors='r')
ax2.tick_params(axis='y', colors='g')
# Set Chart Labels
plt.set_xlabel("BPD")
plt.set_ylabel("Feet" , color = 'b')
#ax1.set_ylabel("BHP", color = 'r')
#ax1.set_ylabel("Effiency", color = 'g')
# Set tight layout
fig = self.mplwidget.figure.tight_layout()
fig = self.mplwidget_2.figure.tight_layout()
fig = self.mplwidget_3.figure.tight_layout()
嵌入matplotlib时应该使用面向对象API而不是pyplot。有关嵌入 PyQt4 的示例,请参阅 here
要重新绘制绘图,请调用 FigureCanvas 对象的 draw()
方法。
from matplotlib.figure import Figure
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas
fig = Figure()
ax = fig.add_subplot(111)
canvas = FigureCanvas(fig)
canvas.show()
canvas.draw() # Redraw figure
我正在尝试在选择新数据时重绘 PYQT 嵌入式 Matplotlib 绘图。它完美地绘制了第一个图。我尝试了很多我在网上看到的东西的变体,但都无济于事。任何帮助深表感谢。
def mpl_plot(self, plot_page, replot = 0): #Data stored in lists
if plot_page == 1: #Plot 1st Page
plt = self.mplwidget.axes
fig = self.mplwidget.figure #Add a figure
if plot_page == 2: #Plot 2nd Page
plt = self.mplwidget_2.axes
fig = self.mplwidget_2.figure #Add a figure
if plot_page == 3: #Plot 3rd Page
plt = self.mplwidget_3.axes
fig = self.mplwidget_3.figure #Add a figure
par1 = fig.add_subplot(1,1,1)
par2 = fig.add_subplot(1,1,1)
#Add Axes
ax1 = par1.twinx()
ax2 = par2.twinx()
ax2.spines["right"].set_position(("outward", 25))
self.make_patch_spines_invisible(ax2)
ax2.spines["right"].set_visible(True)
impeller = str(self.comboBox_impellers.currentText()) #Get Impeller
fac_curves = self.mpl_factory_specs(impeller)
fac_lift = fac_curves[0]
fac_power = fac_curves[1]
fac_flow = fac_curves[2]
fac_eff = fac_curves[3]
fac_max_eff = fac_curves[4]
fac_max_eff_bpd = fac_curves[5]
fac_ranges = self.mpl_factory_ranges()
min_range = fac_ranges[0]
max_range = fac_ranges[1]
#Plot Chart
plt.hold(True) #Has to be included for multiple curves
plt.plot(fac_flow, fac_lift, 'b', linestyle = "dashed", linewidth = 1)
#plt.plot(flow,f_lift,'b.') #Plot datapoints only
#Plot Factory Power
ax1.plot(fac_flow, fac_power, 'r', linestyle = "dashed", linewidth = 1)
#ax1.plot(flow,f_power,'r.') #Plot datapoints only
ax2.plot(fac_flow, fac_eff, 'g', linestyle = "dashed", linewidth = 1)
#Plot x axis minor tick marks
minorLocatorx = AutoMinorLocator()
ax1.xaxis.set_minor_locator(minorLocatorx)
ax1.tick_params(which='both', width= 0.5)
ax1.tick_params(which='major', length=7)
ax1.tick_params(which='minor', length=4, color='k')
#Plot y axis minor tick marks
minorLocatory = AutoMinorLocator()
plt.yaxis.set_minor_locator(minorLocatory)
plt.tick_params(which='both', width= 0.5)
plt.tick_params(which='major', length=7)
plt.tick_params(which='minor', length=4, color='k')
#Make Border of Chart White
#Plot Grid
plt.grid(b=True, which='both', color='k', linestyle='-')
#set shaded Area
plt.axvspan(min_range, max_range, facecolor='#9BE2FA', alpha=0.5) #Yellow rectangular shaded area
#Set Vertical Lines
plt.axvline(fac_max_eff_bpd, color = '#69767A')
bep = fac_max_eff * 0.90
bep_corrected = bep * 0.90
ax2.annotate('BEP', xy=(fac_max_eff_bpd, bep_corrected), xycoords='data',
xytext=(-50, 30), textcoords='offset points',
bbox=dict(boxstyle="round", fc="0.8"),
arrowprops=dict(arrowstyle="-|>",
shrinkA=0, shrinkB=10,
connectionstyle="angle,angleA=0,angleB=90,rad=10"),
)
#Set Scales
plt.set_ylim(0,max(fac_lift) + (max(fac_lift) * 0.40)) #Pressure
#plt.set_xlim(0,max(fac_flow))
ax1.set_ylim(0,max(fac_power) + (max(fac_power) * 0.40)) #Power
ax2.set_ylim(0,max(fac_eff) + (max(fac_eff) * 0.40)) #Effiency
# Set Axes Colors
plt.tick_params(axis='y', colors='b')
ax1.tick_params(axis='y', colors='r')
ax2.tick_params(axis='y', colors='g')
# Set Chart Labels
plt.set_xlabel("BPD")
plt.set_ylabel("Feet" , color = 'b')
#ax1.set_ylabel("BHP", color = 'r')
#ax1.set_ylabel("Effiency", color = 'g')
# Set tight layout
fig = self.mplwidget.figure.tight_layout()
fig = self.mplwidget_2.figure.tight_layout()
fig = self.mplwidget_3.figure.tight_layout()
嵌入matplotlib时应该使用面向对象API而不是pyplot。有关嵌入 PyQt4 的示例,请参阅 here
要重新绘制绘图,请调用 FigureCanvas 对象的 draw()
方法。
from matplotlib.figure import Figure
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas
fig = Figure()
ax = fig.add_subplot(111)
canvas = FigureCanvas(fig)
canvas.show()
canvas.draw() # Redraw figure