在现代 C++11 / C++14 / C++17 和未来的 C++20 中枚举到字符串

enum to string in modern C++11 / C++14 / C++17 and future C++20

与所有其他类似问题相反,这个问题是关于使用新的 C++ 功能。

看了很多答案,还是没找到:

例子

一个例子往往胜过冗长的解释。
您可以在 Coliru.
上编译并 运行 此片段 (Another former example也可以)

#include <map>
#include <iostream>

struct MyClass
{
    enum class MyEnum : char {
        AAA = -8,
        BBB = '8',
        CCC = AAA + BBB
    };
};

// Replace magic() by some faster compile-time generated code
// (you're allowed to replace the return type with std::string
// if that's easier for you)
const char* magic (MyClass::MyEnum e)
{
    const std::map<MyClass::MyEnum,const char*> MyEnumStrings {
        { MyClass::MyEnum::AAA, "MyClass::MyEnum::AAA" },
        { MyClass::MyEnum::BBB, "MyClass::MyEnum::BBB" },
        { MyClass::MyEnum::CCC, "MyClass::MyEnum::CCC" }
    };
    auto   it  = MyEnumStrings.find(e);
    return it == MyEnumStrings.end() ? "Out of range" : it->second;
}

int main()
{
   std::cout << magic(MyClass::MyEnum::AAA) <<'\n';
   std::cout << magic(MyClass::MyEnum::BBB) <<'\n';
   std::cout << magic(MyClass::MyEnum::CCC) <<'\n';
}

约束

很高兴拥有

一个可能的想法是使用 C++ 编译器功能在编译时使用基于 variadic template classconstexpr 函数的元编程技巧生成 C++ 代码...

对于C++17C++20,你会对Reflection Study Group (SG7)的工作感兴趣。有一系列平行的论文涵盖 wording (P0194) and rationale, design and evolution (P0385)。 (链接解析为每个系列中的最新论文。)

自 P0194r2 (2016-10-15) 起,语法将使用建议的 reflexpr 关键字:

meta::get_base_name_v<
  meta::get_element_m<
    meta::get_enumerators_m<reflexpr(MyEnum)>,
    0>
  >

例如(改编自Matus Choclik's reflexpr branch of clang):

#include <reflexpr>
#include <iostream>

enum MyEnum { AAA = 1, BBB, CCC = 99 };

int main()
{
  auto name_of_MyEnum_0 = 
    std::meta::get_base_name_v<
      std::meta::get_element_m<
        std::meta::get_enumerators_m<reflexpr(MyEnum)>,
        0>
    >;

  // prints "AAA"
  std::cout << name_of_MyEnum_0 << std::endl;
}

静态反射未能进入 C++17(而是进入了 2016 年 11 月在 Issaquah 举行的标准会议上提出的 probably-final 草案),但有信心它会进入 C++ 20;来自 Herb Sutter's trip report:

In particular, the Reflection study group reviewed the latest merged static reflection proposal and found it ready to enter the main Evolution groups at our next meeting to start considering the unified static reflection proposal for a TS or for the next standard.

根据 OP 的要求,这里是基于 Boost Preprosessor and Variadic Macros 的丑陋宏解决方案的精简版。

它允许一个简单的列表,例如枚举器元素的语法以及特定元素的设置值,以便

XXX_ENUM(foo,(a,b,(c,42)));

扩展到

enum foo {
    a,
    b,
    c=42
};

以及输出和做一些转换回来的必要功能。这个宏已经存在很长时间了,我不完全确定它是最有效的方法,还是一种符合规范的方法,但它一直有效

可以在 Ideone and Coliru 上看到完整的代码。

它的巨大丑陋在上面;如果我知道怎么做,我会把它放在剧透后面以保护你的眼睛,但 markdown 不喜欢我。

库(合并到一个 header 文件中)

#include <boost/preprocessor.hpp>
#include <string>
#include <unordered_map>

namespace xxx
{

template<class T>
struct enum_cast_adl_helper { };

template<class E>
E enum_cast( const std::string& s )
{
    return do_enum_cast(s,enum_cast_adl_helper<E>());
}

template<class E>
E enum_cast( const char* cs )
{
    std::string s(cs);
    return enum_cast<E>(s);
}

} // namespace xxx

#define XXX_PP_ARG_N(                             \
          _1, _2, _3, _4, _5, _6, _7, _8, _9,_10, \
         _11,_12,_13,_14,_15,_16,_17,_18,_19,_20, \
         _21,_22,_23,_24,_25,_26,_27,_28,_29,_30, \
         _31,_32,_33,_34,_35,_36,_37,_38,_39,_40, \
         _41,_42,_43,_44,_45,_46,_47,_48,_49,_50, \
         _51,_52,_53,_54,_55,_56,_57,_58,_59,_60, \
         _61,_62,_63,N,...) N

#define XXX_PP_RSEQ_N()                 \
         63,62,61,60,                   \
         59,58,57,56,55,54,53,52,51,50, \
         49,48,47,46,45,44,43,42,41,40, \
         39,38,37,36,35,34,33,32,31,30, \
         29,28,27,26,25,24,23,22,21,20, \
         19,18,17,16,15,14,13,12,11,10, \
         9,8,7,6,5,4,3,2,1,0 

#define XXX_PP_NARG_(...) XXX_PP_ARG_N(__VA_ARGS__)
#define XXX_PP_NARG(...)  XXX_PP_NARG_(__VA_ARGS__,XXX_PP_RSEQ_N())
#define XXX_TUPLE_SIZE_INTERNAL(TUPLE) XXX_PP_NARG TUPLE

#define XXX_TUPLE_CHOICE(i)                            \
  BOOST_PP_APPLY(                                      \
    BOOST_PP_TUPLE_ELEM(                               \
      25, i, (                                         \
        (0), (1), (2), (3), (4), (5), (6), (7), (8),   \
        (9), (10), (11), (12), (13), (14), (15), (16), \
        (17), (18), (19), (20), (21), (22), (23), (24) \
  ) ) )

#define BOOST_PP_BOOL_00  BOOST_PP_BOOL_0
#define BOOST_PP_BOOL_01  BOOST_PP_BOOL_1
#define BOOST_PP_BOOL_02  BOOST_PP_BOOL_2
#define BOOST_PP_BOOL_03  BOOST_PP_BOOL_3
#define BOOST_PP_BOOL_04  BOOST_PP_BOOL_4
#define BOOST_PP_BOOL_05  BOOST_PP_BOOL_5
#define BOOST_PP_BOOL_06  BOOST_PP_BOOL_6
#define BOOST_PP_BOOL_07  BOOST_PP_BOOL_7
#define BOOST_PP_BOOL_08  BOOST_PP_BOOL_8
#define BOOST_PP_BOOL_09  BOOST_PP_BOOL_9
#define BOOST_PP_BOOL_010 BOOST_PP_BOOL_10
#define BOOST_PP_BOOL_011 BOOST_PP_BOOL_11
#define BOOST_PP_BOOL_012 BOOST_PP_BOOL_12
#define BOOST_PP_BOOL_013 BOOST_PP_BOOL_13
#define BOOST_PP_BOOL_014 BOOST_PP_BOOL_14
#define BOOST_PP_BOOL_015 BOOST_PP_BOOL_15
#define BOOST_PP_BOOL_016 BOOST_PP_BOOL_16
#define BOOST_PP_BOOL_017 BOOST_PP_BOOL_17
#define BOOST_PP_BOOL_018 BOOST_PP_BOOL_18
#define BOOST_PP_BOOL_019 BOOST_PP_BOOL_19
#define BOOST_PP_BOOL_020 BOOST_PP_BOOL_20
#define BOOST_PP_BOOL_021 BOOST_PP_BOOL_21
#define BOOST_PP_BOOL_022 BOOST_PP_BOOL_22
#define BOOST_PP_BOOL_023 BOOST_PP_BOOL_23
#define BOOST_PP_BOOL_024 BOOST_PP_BOOL_24
#define BOOST_PP_BOOL_025 BOOST_PP_BOOL_25
#define BOOST_PP_BOOL_026 BOOST_PP_BOOL_26
#define BOOST_PP_BOOL_027 BOOST_PP_BOOL_27
#define BOOST_PP_BOOL_028 BOOST_PP_BOOL_28
#define BOOST_PP_BOOL_029 BOOST_PP_BOOL_29
#define BOOST_PP_BOOL_030 BOOST_PP_BOOL_30
#define BOOST_PP_BOOL_031 BOOST_PP_BOOL_31
#define BOOST_PP_BOOL_032 BOOST_PP_BOOL_32
#define BOOST_PP_BOOL_033 BOOST_PP_BOOL_33
#define BOOST_PP_BOOL_034 BOOST_PP_BOOL_34
#define BOOST_PP_BOOL_035 BOOST_PP_BOOL_35
#define BOOST_PP_BOOL_036 BOOST_PP_BOOL_36
#define BOOST_PP_BOOL_037 BOOST_PP_BOOL_37
#define BOOST_PP_BOOL_038 BOOST_PP_BOOL_38
#define BOOST_PP_BOOL_039 BOOST_PP_BOOL_39
#define BOOST_PP_BOOL_040 BOOST_PP_BOOL_40
#define BOOST_PP_BOOL_041 BOOST_PP_BOOL_41
#define BOOST_PP_BOOL_042 BOOST_PP_BOOL_42
#define BOOST_PP_BOOL_043 BOOST_PP_BOOL_43
#define BOOST_PP_BOOL_044 BOOST_PP_BOOL_44
#define BOOST_PP_BOOL_045 BOOST_PP_BOOL_45
#define BOOST_PP_BOOL_046 BOOST_PP_BOOL_46
#define BOOST_PP_BOOL_047 BOOST_PP_BOOL_47
#define BOOST_PP_BOOL_048 BOOST_PP_BOOL_48
#define BOOST_PP_BOOL_049 BOOST_PP_BOOL_49
#define BOOST_PP_BOOL_050 BOOST_PP_BOOL_50
#define BOOST_PP_BOOL_051 BOOST_PP_BOOL_51
#define BOOST_PP_BOOL_052 BOOST_PP_BOOL_52
#define BOOST_PP_BOOL_053 BOOST_PP_BOOL_53
#define BOOST_PP_BOOL_054 BOOST_PP_BOOL_54
#define BOOST_PP_BOOL_055 BOOST_PP_BOOL_55
#define BOOST_PP_BOOL_056 BOOST_PP_BOOL_56
#define BOOST_PP_BOOL_057 BOOST_PP_BOOL_57
#define BOOST_PP_BOOL_058 BOOST_PP_BOOL_58
#define BOOST_PP_BOOL_059 BOOST_PP_BOOL_59
#define BOOST_PP_BOOL_060 BOOST_PP_BOOL_60
#define BOOST_PP_BOOL_061 BOOST_PP_BOOL_61
#define BOOST_PP_BOOL_062 BOOST_PP_BOOL_62
#define BOOST_PP_BOOL_063 BOOST_PP_BOOL_63

#define BOOST_PP_DEC_00  BOOST_PP_DEC_0
#define BOOST_PP_DEC_01  BOOST_PP_DEC_1
#define BOOST_PP_DEC_02  BOOST_PP_DEC_2
#define BOOST_PP_DEC_03  BOOST_PP_DEC_3
#define BOOST_PP_DEC_04  BOOST_PP_DEC_4
#define BOOST_PP_DEC_05  BOOST_PP_DEC_5
#define BOOST_PP_DEC_06  BOOST_PP_DEC_6
#define BOOST_PP_DEC_07  BOOST_PP_DEC_7
#define BOOST_PP_DEC_08  BOOST_PP_DEC_8
#define BOOST_PP_DEC_09  BOOST_PP_DEC_9
#define BOOST_PP_DEC_010 BOOST_PP_DEC_10
#define BOOST_PP_DEC_011 BOOST_PP_DEC_11
#define BOOST_PP_DEC_012 BOOST_PP_DEC_12
#define BOOST_PP_DEC_013 BOOST_PP_DEC_13
#define BOOST_PP_DEC_014 BOOST_PP_DEC_14
#define BOOST_PP_DEC_015 BOOST_PP_DEC_15
#define BOOST_PP_DEC_016 BOOST_PP_DEC_16
#define BOOST_PP_DEC_017 BOOST_PP_DEC_17
#define BOOST_PP_DEC_018 BOOST_PP_DEC_18
#define BOOST_PP_DEC_019 BOOST_PP_DEC_19
#define BOOST_PP_DEC_020 BOOST_PP_DEC_20
#define BOOST_PP_DEC_021 BOOST_PP_DEC_21
#define BOOST_PP_DEC_022 BOOST_PP_DEC_22
#define BOOST_PP_DEC_023 BOOST_PP_DEC_23
#define BOOST_PP_DEC_024 BOOST_PP_DEC_24
#define BOOST_PP_DEC_025 BOOST_PP_DEC_25
#define BOOST_PP_DEC_026 BOOST_PP_DEC_26
#define BOOST_PP_DEC_027 BOOST_PP_DEC_27
#define BOOST_PP_DEC_028 BOOST_PP_DEC_28
#define BOOST_PP_DEC_029 BOOST_PP_DEC_29
#define BOOST_PP_DEC_030 BOOST_PP_DEC_30
#define BOOST_PP_DEC_031 BOOST_PP_DEC_31
#define BOOST_PP_DEC_032 BOOST_PP_DEC_32
#define BOOST_PP_DEC_033 BOOST_PP_DEC_33
#define BOOST_PP_DEC_034 BOOST_PP_DEC_34
#define BOOST_PP_DEC_035 BOOST_PP_DEC_35
#define BOOST_PP_DEC_036 BOOST_PP_DEC_36
#define BOOST_PP_DEC_037 BOOST_PP_DEC_37
#define BOOST_PP_DEC_038 BOOST_PP_DEC_38
#define BOOST_PP_DEC_039 BOOST_PP_DEC_39
#define BOOST_PP_DEC_040 BOOST_PP_DEC_40
#define BOOST_PP_DEC_041 BOOST_PP_DEC_41
#define BOOST_PP_DEC_042 BOOST_PP_DEC_42
#define BOOST_PP_DEC_043 BOOST_PP_DEC_43
#define BOOST_PP_DEC_044 BOOST_PP_DEC_44
#define BOOST_PP_DEC_045 BOOST_PP_DEC_45
#define BOOST_PP_DEC_046 BOOST_PP_DEC_46
#define BOOST_PP_DEC_047 BOOST_PP_DEC_47
#define BOOST_PP_DEC_048 BOOST_PP_DEC_48
#define BOOST_PP_DEC_049 BOOST_PP_DEC_49
#define BOOST_PP_DEC_050 BOOST_PP_DEC_50
#define BOOST_PP_DEC_051 BOOST_PP_DEC_51
#define BOOST_PP_DEC_052 BOOST_PP_DEC_52
#define BOOST_PP_DEC_053 BOOST_PP_DEC_53
#define BOOST_PP_DEC_054 BOOST_PP_DEC_54
#define BOOST_PP_DEC_055 BOOST_PP_DEC_55
#define BOOST_PP_DEC_056 BOOST_PP_DEC_56
#define BOOST_PP_DEC_057 BOOST_PP_DEC_57
#define BOOST_PP_DEC_058 BOOST_PP_DEC_58
#define BOOST_PP_DEC_059 BOOST_PP_DEC_59
#define BOOST_PP_DEC_060 BOOST_PP_DEC_60
#define BOOST_PP_DEC_061 BOOST_PP_DEC_61
#define BOOST_PP_DEC_062 BOOST_PP_DEC_62
#define BOOST_PP_DEC_063 BOOST_PP_DEC_63

#define XXX_TO_NUMx(x) 0 ## x
#define XXX_TO_NUM(x) BOOST_PP_ADD(0,XXX_TO_NUMx(x))
#define XXX_STRINGIZEX(x) # x
#define XXX_VSTRINGIZE_SINGLE(a,b,x) XXX_STRINGIZE(x)
#define XXX_VSTRINGIZE_TUPLE(tpl) XXX_TUPLE_FOR_EACH(XXX_VSTRINGIZE_SINGLE,,tpl)
#define XXX_TUPLE_SIZE(TUPLE) XXX_TO_NUM(XXX_TUPLE_CHOICE(XXX_TUPLE_SIZE_INTERNAL(TUPLE)))
#define XXX_TUPLE_FOR_EACH(MACRO,DATA,TUPLE) BOOST_PP_LIST_FOR_EACH(MACRO,DATA,BOOST_PP_TUPLE_TO_LIST(XXX_TUPLE_SIZE(TUPLE),TUPLE))
#define XXX_STRINGIZE(x) XXX_STRINGIZEX(x)
#define XXX_VSTRINGIZE(...) XXX_VSTRINGIZE_TUPLE((__VA_ARGS__))
#define XXX_CAST_TO_VOID_ELEMENT(r,data,elem) (void)(elem);
#define XXX_CAST_TO_VOID_INTERNAL(TUPLE) XXX_TUPLE_FOR_EACH(XXX_CAST_TO_VOID_ELEMENT,,TUPLE)    
#define XXX_CAST_TO_VOID(...) XXX_CAST_TO_VOID_INTERNAL((__VA_ARGS__))
#define XXX_ENUM_EXTRACT_SP(en) BOOST_PP_TUPLE_ELEM(XXX_TUPLE_SIZE(en),0,en) = BOOST_PP_TUPLE_ELEM(XXX_TUPLE_SIZE(en),1,en)
#define XXX_ENUM_ELEMENT(r,data,elem) BOOST_PP_IF( XXX_TUPLE_SIZE(elem), XXX_ENUM_EXTRACT_SP(elem), elem) ,
#define XXX_ENUM_EXTRACT_ELEMENT(en) BOOST_PP_TUPLE_ELEM(XXX_TUPLE_SIZE(en),0,en)
#define XXX_ENUM_CASE_ELEMENT(en) BOOST_PP_IF( XXX_TUPLE_SIZE(en), XXX_ENUM_EXTRACT_ELEMENT(en), en )
#define XXX_ENUM_CASE(r,data,elem) case data :: XXX_ENUM_CASE_ELEMENT(elem) : return #data "::" XXX_STRINGIZE(XXX_ENUM_CASE_ELEMENT(elem));
#define XXX_ENUM_IFELSE(r,data,elem) else if( en == data :: XXX_ENUM_CASE_ELEMENT(elem)) { return #data "::" XXX_STRINGIZE(XXX_ENUM_CASE_ELEMENT(elem)); }
#define XXX_ENUM_CASTLIST(r,data,elem) { XXX_STRINGIZE(XXX_ENUM_CASE_ELEMENT(elem)), data :: XXX_ENUM_CASE_ELEMENT(elem) },
#define XXX_ENUM_QUALIFIED_CASTLIST(r,data,elem) { #data "::" XXX_STRINGIZE(XXX_ENUM_CASE_ELEMENT(elem)), data :: XXX_ENUM_CASE_ELEMENT(elem) },

#define XXX_ENUM_INTERNAL(TYPE,NAME,TUPLE)                       \
enum TYPE                                                        \
{                                                                \
   XXX_TUPLE_FOR_EACH(XXX_ENUM_ELEMENT,,TUPLE)                   \
   BOOST_PP_CAT(last_enum_,NAME)                                 \
};                                                               \
                                                                 \
inline                                                           \
const char* to_string( NAME en )                                 \
{                                                                \
   if(false)                                                     \
   {                                                             \
   }                                                             \
   XXX_TUPLE_FOR_EACH(XXX_ENUM_IFELSE,NAME,TUPLE)                \
   else if( en == NAME :: BOOST_PP_CAT(last_enum_,NAME) )        \
   {                                                             \
     return XXX_VSTRINGIZE(NAME,::,BOOST_PP_CAT(last_enum_,NAME));  \
   }                                                             \
   else                                                          \
   {                                                             \
     return "Invalid enum value specified for " # NAME;          \
   }                                                             \
}                                                                \
                                                                 \
inline                                                           \
std::ostream& operator<<( std::ostream& os, const NAME& en )     \
{                                                                \
   os << to_string(en);                                          \
   return os;                                                    \
}                                                                \
                                                                 \
inline                                                           \
NAME do_enum_cast( const std::string& s, const ::xxx::enum_cast_adl_helper<NAME>& ) \
{                                                                \
  static const std::unordered_map<std::string,NAME> map =        \
  {                                                              \
    XXX_TUPLE_FOR_EACH(XXX_ENUM_CASTLIST,NAME,TUPLE)             \
    XXX_TUPLE_FOR_EACH(XXX_ENUM_QUALIFIED_CASTLIST,NAME,TUPLE)   \
  };                                                             \
                                                                 \
  auto cit = map.find(s);                                        \
  if( cit == map.end() )                                         \
  {                                                              \
    throw std::runtime_error("Invalid value to cast to enum");   \
  }                                                              \
  return cit->second;                                            \
}

#define XXX_ENUM(NAME,TUPLE) XXX_ENUM_INTERNAL(NAME,NAME,TUPLE)
#define XXX_ENUM_CLASS(NAME,TUPLE) XXX_ENUM_INTERNAL(class NAME,NAME,TUPLE)
#define XXX_ENUM_CLASS_TYPE(NAME,TYPE,TUPLE) XXX_ENUM_INTERNAL(class NAME : TYPE,NAME,TUPLE)
#define XXX_ENUM_TYPE(NAME,TYPE,TUPLE) XXX_ENUM_INTERNAL(NAME : TYPE,NAME,TUPLE)

用法

#include "xxx_enum.h"  // the above lib
#include <iostream>

XXX_ENUM(foo,(a,b,(c,42)));

int main()
{
  std::cout << "foo::a = "            << foo::a            <<'\n';
  std::cout << "(int)foo::c = "       << (int)foo::c       <<'\n';
  std::cout << "to_string(foo::b) = " << to_string(foo::b) <<'\n';
  std::cout << "xxx::enum_cast<foo>(\"b\") = " << xxx::enum_cast<foo>("b") <<'\n';
}

编译(复制粘贴header在main.cpp内)

> g++ --version | sed 1q
g++ (GCC) 4.9.2

> g++ -std=c++14 -pedantic -Wall -Wextra main.cpp
main.cpp:268:31: warning: extra ';' [-Wpedantic]
     XXX_ENUM(foo,(a,b,(c,42)));
                               ^

输出

foo::a = foo::a
(int)foo::c = 42
to_string(foo::b) = foo::b
xxx::enum_cast<foo>("b") = foo::b

Back in 2011 I spent a weekend fine-tuning a macro-based solution 最终没有使用它。

我目前的程序是启动Vim,将枚举器复制到一个空的开关体中,启动一个新的宏,将第一个枚举器转换为一个case语句,将光标移动到在下一行的开头, 停止宏并通过 运行 宏在其他枚举器上生成剩余的 case 语句。

Vim 宏比 C++ 宏更有趣。

现实生活中的例子:

enum class EtherType : uint16_t
{
    ARP   = 0x0806,
    IPv4  = 0x0800,
    VLAN  = 0x8100,
    IPv6  = 0x86DD
};

我将创建这个:

std::ostream& operator<< (std::ostream& os, EtherType ethertype)
{
    switch (ethertype)
    {
        case EtherType::ARP : return os << "ARP" ;
        case EtherType::IPv4: return os << "IPv4";
        case EtherType::VLAN: return os << "VLAN";
        case EtherType::IPv6: return os << "IPv6";
        // omit default case to trigger compiler warning for missing cases
    };
    return os << static_cast<std::uint16_t>(ethertype);
}

我就是这样度过的。

不过,对枚举字符串化的本机支持会好得多。我很想看看 C++17 中反射工作组的结果。

@sehe 在 comments.

中发布了另一种方法

我不知道你是否喜欢这个,我对这个解决方案不是很满意,但它是一种 C++14 友好的方法,因为它使用模板变量并滥用模板特化:

enum class MyEnum : std::uint_fast8_t {
   AAA,
   BBB,
   CCC,
};

template<MyEnum> const char MyEnumName[] = "Invalid MyEnum value";
template<> const char MyEnumName<MyEnum::AAA>[] = "AAA";
template<> const char MyEnumName<MyEnum::BBB>[] = "BBB";
template<> const char MyEnumName<MyEnum::CCC>[] = "CCC";

int main()
{
    // Prints "AAA"
    std::cout << MyEnumName<MyEnum::AAA> << '\n';
    // Prints "Invalid MyEnum value"
    std::cout << MyEnumName<static_cast<MyEnum>(0x12345678)> << '\n';
    // Well... in fact it prints "Invalid MyEnum value" for any value
    // different of MyEnum::AAA, MyEnum::BBB or MyEnum::CCC.

    return 0;
}

这种方法最糟糕的是维护起来很痛苦,但是维护其他一些类似的方法也很痛苦,不是吗?

这个方法的优点:

  • 使用变量模板(C++14 特性)
  • 通过模板专业化,我们可以在使用无效值时“检测”到(但我不确定这是否有用)。
  • 看起来很整洁。
  • 名称查找在编译时完成。

Live example

编辑

神秘user673679你是对的; C++14 变量模板方法不处理运行时情况,忘记它是我的错:(

但我们仍然可以使用一些现代 C++ 功能和变量模板加上可变参数模板技巧来实现从枚举值到字符串的运行时转换……它和其他的一样麻烦,但仍然值得一提。

让我们开始使用模板别名来缩短对枚举到字符串映射的访问:

// enum_map contains pairs of enum value and value string for each enum
// this shortcut allows us to use enum_map<whatever>.
template <typename ENUM>
using enum_map = std::map<ENUM, const std::string>;

// This variable template will create a map for each enum type which is
// instantiated with.
template <typename ENUM>
enum_map<ENUM> enum_values{};

然后,可变参数模板的诡计:

template <typename ENUM>
void initialize() {}

template <typename ENUM, typename ... args>
void initialize(const ENUM value, const char *name, args ... tail)
{
    enum_values<ENUM>.emplace(value, name);
    initialize<ENUM>(tail ...);
}

这里的“最佳技巧”是使用变量模板映射,其中包含每个枚举条目的值和名称;这个映射在每个翻译单元中都是相同的,并且在任何地方都有相同的名称,所以非常简单明了,如果我们这样调用 initialize 函数:

initialize
(
    MyEnum::AAA, "AAA",
    MyEnum::BBB, "BBB",
    MyEnum::CCC, "CCC"
);

我们正在为每个 MyEnum 条目分配名称,并且可以在运行时使用:

std::cout << enum_values<MyEnum>[MyEnum::AAA] << '\n';

但可以通过 SFINAE 和重载 << 运算符进行改进:

template<typename ENUM, class = typename std::enable_if<std::is_enum<ENUM>::value>::type>
std::ostream &operator <<(std::ostream &o, const ENUM value)
{
    static const std::string Unknown{std::string{typeid(ENUM).name()} + " unknown value"};
    auto found = enum_values<ENUM>.find(value);

    return o << (found == enum_values<ENUM>.end() ? Unknown : found->second);
}

有了正确的operator <<,现在我们可以这样使用枚举了:

std::cout << MyEnum::AAA << '\n';

这个维护起来也比较麻烦,可以改进,希望大家理解。

Live example

编辑:在下方查看更新版本

如前所述,N4113是这件事的最终解决方案,但我们还得等一年多才能看到。

同时,如果您想要这样的功能,则需要求助于 "simple" 模板和一些预处理器魔法。

枚举器

template<typename T>
class Enum final
{
    const char* m_name;
    const T m_value;
    static T m_counter;

public:
    Enum(const char* str, T init = m_counter) : m_name(str), m_value(init) {m_counter = (init + 1);}

    const T value() const {return m_value;}
    const char* name() const {return m_name;}
};

template<typename T>
T Enum<T>::m_counter = 0;

#define ENUM_TYPE(x)      using Enum = Enum<x>;
#define ENUM_DECL(x,...)  x(#x,##__VA_ARGS__)
#define ENUM(...)         const Enum ENUM_DECL(__VA_ARGS__);

用法

#include <iostream>

//the initialization order should be correct in all scenarios
namespace Level
{
    ENUM_TYPE(std::uint8)
    ENUM(OFF)
    ENUM(SEVERE)
    ENUM(WARNING)
    ENUM(INFO, 10)
    ENUM(DEBUG)
    ENUM(ALL)
}

namespace Example
{
    ENUM_TYPE(long)
    ENUM(A)
    ENUM(B)
    ENUM(C, 20)
    ENUM(D)
    ENUM(E)
    ENUM(F)
}

int main(int argc, char** argv)
{
    Level::Enum lvl = Level::WARNING;
    Example::Enum ex = Example::C;
    std::cout << lvl.value() << std::endl; //2
    std::cout << ex.value() << std::endl; //20
}

简单说明

Enum<T>::m_counter 在每个命名空间声明中设置为 0。
有人能指出标准中提到^^这种行为^^的地方吗?
预处理器魔法使枚举器的声明自动化。

缺点

  • 它不是真正的 enum 类型,因此不能升级为 int
  • 不能用于 switch cases

备选方案

这个牺牲了行号(不是真的)但可以用于 switch cases

#define ENUM_TYPE(x) using type = Enum<x>
#define ENUM(x)      constexpr type x{__LINE__,#x}

template<typename T>
struct Enum final
{
    const T value;
    const char* name;

    constexpr operator const T() const noexcept {return value;}
    constexpr const char* operator&() const noexcept {return name;}
};

勘误表

#line 0 在 GCC 和 clang 上与 -pedantic 冲突。

解决方法

要么从 #line 1 开始,然后从 __LINE__ 中减去 1。
或者,不要使用 -pedantic.
当我们这样做的时候,不惜一切代价避免 VC++,它一直是编译器的笑话。

用法

#include <iostream>

namespace Level
{
    ENUM_TYPE(short);
    #line 0
    ENUM(OFF);
    ENUM(SEVERE);
    ENUM(WARNING);
    #line 10
    ENUM(INFO);
    ENUM(DEBUG);
    ENUM(ALL);
    #line <next line number> //restore the line numbering
};

int main(int argc, char** argv)
{
    std::cout << Level::OFF << std::endl;   // 0
    std::cout << &Level::OFF << std::endl;  // OFF

    std::cout << Level::INFO << std::endl;  // 10
    std::cout << &Level::INFO << std::endl; // INFO

    switch(/* any integer or integer-convertible type */)
    {
    case Level::OFF:
        //...
        break;

    case Level::SEVERE:
        //...
        break;

    //...
    }

    return 0;
}

现实生活中的实现和使用

r3dVoxel - Enum
r3dVoxel - ELoggingLevel

快速参考

#line lineno -- cppreference.com

better_enums库的方法)

在当前的 C++ 中有一种对字符串进行枚举的方法,如下所示:

ENUM(Channel, char, Red = 1, Green, Blue)

// "Same as":
// enum class Channel : char { Red = 1, Green, Blue };

用法:

Channel     c = Channel::_from_string("Green");  // Channel::Green (2)
c._to_string();                                  // string "Green"

for (Channel c : Channel::_values())
    std::cout << c << std::endl;

// And so on...

可以进行所有操作constexpr。也可以实现@ecatmur的回答中提到的C++17反射提议

  • 只有一个宏。我相信这是最低限度的可能,因为预处理器字符串化 (#) 是当前 C++ 中将标记转换为字符串的唯一方法。
  • 这个宏非常不显眼——常量声明,包括初始化器,被粘贴到一个内置的枚举声明中。这意味着它们具有与内置枚举相同的语法和含义。
  • 消除重复。
  • 由于 constexpr,该实现至少在 C++11 中是最自然和最有用的。它也可以与 C++98 + __VA_ARGS__ 一起工作。这绝对是现代 C++。

宏的定义有点复杂,所以我分几个方面来回答。

  • 这个答案的大部分是我认为适合 space Whosebug 约束的实现。
  • 还有一个 CodeProject article 在长篇教程中描述了实施的基础知识。 [我应该把它移到这里吗?我认为 SO 回答太多了]。
  • 有一个full-featured library "Better Enums" that implements the macro in a single header file. It also implements N4428 Type Property Queries,C++17反射提案N4113的当前修订版。因此,至少对于通过此宏声明的枚举,您现在可以在 C++11/C++14 中使用建议的 C++17 枚举反射。

将这个答案扩展到库的特性很简单——这里没有遗漏任何东西 "important"。然而,它非常乏味,并且存在编译器可移植性问题。

免责声明:我是 CodeProject 文章和库的作者。

您可以尝试 code in this answer, the library, and the implementation of N4428 live online in Wandbox. The library documentation also contains an overview of how to use it as N4428,它解释了该提案的枚举部分。


说明

下面的代码实现了枚举和字符串之间的转换。但是,它也可以扩展为做其他事情,例如迭代。此答案将枚举包装在 struct 中。您还可以在枚举旁边生成特征 struct

策略是生成这样的东西:

struct Channel {
    enum _enum : char { __VA_ARGS__ };
    constexpr static const Channel          _values[] = { __VA_ARGS__ };
    constexpr static const char * const     _names[] = { #__VA_ARGS__ };

    static const char* _to_string(Channel v) { /* easy */ }
    constexpr static Channel _from_string(const char *s) { /* easy */ }
};

问题是:

  1. 我们最终会得到类似 {Red = 1, Green, Blue} 的东西作为值数组的初始值设定项。这不是有效的 C++,因为 Red 不是可赋值的表达式。这通过将每个常量转换为具有赋值运算符的类型 T 来解决,但会删除赋值:{(T)Red = 1, (T)Green, (T)Blue}.
  2. 同样,我们最终将 {"Red = 1", "Green", "Blue"} 作为名称数组的初始值设定项。我们需要 trim 关闭 " = 1"。我不知道在编译时执行此操作的好方法,因此我们将其推迟到 运行 时间。结果,_to_string 不会是 constexpr,但 _from_string 仍然可以是 constexpr,因为我们可以将白色 space 和等号视为终止符与 untrimmed 字符串比较。
  3. 以上都需要一个 "mapping" 宏,它可以将另一个宏应用到 __VA_ARGS__ 中的每个元素。这是非常标准的。此答案包括一个最多可处理 8 个元素的简单版本。
  4. 如果宏要真正独立,它就不需要声明需要单独定义的静态数据。实际上,这意味着数组需要特殊处理。有两种可能的解决方案:constexpr(或仅 const)namespace 范围内的数组,或非 constexpr 静态内联函数中的常规数组。此答案中的代码适用于 C++11,并采用前一种方法。 CodeProject文章是针对C++98的,取后者。

代码

#include <cstddef>      // For size_t.
#include <cstring>      // For strcspn, strncpy.
#include <stdexcept>    // For runtime_error.



// A "typical" mapping macro. MAP(macro, a, b, c, ...) expands to
// macro(a) macro(b) macro(c) ...
// The helper macro COUNT(a, b, c, ...) expands to the number of
// arguments, and IDENTITY(x) is needed to control the order of
// expansion of __VA_ARGS__ on Visual C++ compilers.
#define MAP(macro, ...) \
    IDENTITY( \
        APPLY(CHOOSE_MAP_START, COUNT(__VA_ARGS__)) \
            (macro, __VA_ARGS__))

#define CHOOSE_MAP_START(count) MAP ## count

#define APPLY(macro, ...) IDENTITY(macro(__VA_ARGS__))

#define IDENTITY(x) x

#define MAP1(m, x)      m(x)
#define MAP2(m, x, ...) m(x) IDENTITY(MAP1(m, __VA_ARGS__))
#define MAP3(m, x, ...) m(x) IDENTITY(MAP2(m, __VA_ARGS__))
#define MAP4(m, x, ...) m(x) IDENTITY(MAP3(m, __VA_ARGS__))
#define MAP5(m, x, ...) m(x) IDENTITY(MAP4(m, __VA_ARGS__))
#define MAP6(m, x, ...) m(x) IDENTITY(MAP5(m, __VA_ARGS__))
#define MAP7(m, x, ...) m(x) IDENTITY(MAP6(m, __VA_ARGS__))
#define MAP8(m, x, ...) m(x) IDENTITY(MAP7(m, __VA_ARGS__))

#define EVALUATE_COUNT(_1, _2, _3, _4, _5, _6, _7, _8, count, ...) \
    count

#define COUNT(...) \
    IDENTITY(EVALUATE_COUNT(__VA_ARGS__, 8, 7, 6, 5, 4, 3, 2, 1))



// The type "T" mentioned above that drops assignment operations.
template <typename U>
struct ignore_assign {
    constexpr explicit ignore_assign(U value) : _value(value) { }
    constexpr operator U() const { return _value; }

    constexpr const ignore_assign& operator =(int dummy) const
        { return *this; }

    U   _value;
};



// Prepends "(ignore_assign<_underlying>)" to each argument.
#define IGNORE_ASSIGN_SINGLE(e) (ignore_assign<_underlying>)e,
#define IGNORE_ASSIGN(...) \
    IDENTITY(MAP(IGNORE_ASSIGN_SINGLE, __VA_ARGS__))

// Stringizes each argument.
#define STRINGIZE_SINGLE(e) #e,
#define STRINGIZE(...) IDENTITY(MAP(STRINGIZE_SINGLE, __VA_ARGS__))



// Some helpers needed for _from_string.
constexpr const char    terminators[] = " =\t\r\n";

// The size of terminators includes the implicit '[=13=]'.
constexpr bool is_terminator(char c, size_t index = 0)
{
    return
        index >= sizeof(terminators) ? false :
        c == terminators[index] ? true :
        is_terminator(c, index + 1);
}

constexpr bool matches_untrimmed(const char *untrimmed, const char *s,
                                 size_t index = 0)
{
    return
        is_terminator(untrimmed[index]) ? s[index] == '[=13=]' :
        s[index] != untrimmed[index] ? false :
        matches_untrimmed(untrimmed, s, index + 1);
}



// The macro proper.
//
// There are several "simplifications" in this implementation, for the
// sake of brevity. First, we have only one viable option for declaring
// constexpr arrays: at namespace scope. This probably should be done
// two namespaces deep: one namespace that is likely to be unique for
// our little enum "library", then inside it a namespace whose name is
// based on the name of the enum to avoid collisions with other enums.
// I am using only one level of nesting.
//
// Declaring constexpr arrays inside the struct is not viable because
// they will need out-of-line definitions, which will result in
// duplicate symbols when linking. This can be solved with weak
// symbols, but that is compiler- and system-specific. It is not
// possible to declare constexpr arrays as static variables in
// constexpr functions due to the restrictions on such functions.
//
// Note that this prevents the use of this macro anywhere except at
// namespace scope. Ironically, the C++98 version of this, which can
// declare static arrays inside static member functions, is actually
// more flexible in this regard. It is shown in the CodeProject
// article.
//
// Second, for compilation performance reasons, it is best to separate
// the macro into a "parametric" portion, and the portion that depends
// on knowing __VA_ARGS__, and factor the former out into a template.
//
// Third, this code uses a default parameter in _from_string that may
// be better not exposed in the public interface.

#define ENUM(EnumName, Underlying, ...)                               \
namespace data_ ## EnumName {                                         \
    using _underlying = Underlying;                                   \
    enum { __VA_ARGS__ };                                             \
                                                                      \
    constexpr const size_t           _size =                          \
        IDENTITY(COUNT(__VA_ARGS__));                                 \
                                                                      \
    constexpr const _underlying      _values[] =                      \
        { IDENTITY(IGNORE_ASSIGN(__VA_ARGS__)) };                     \
                                                                      \
    constexpr const char * const     _raw_names[] =                   \
        { IDENTITY(STRINGIZE(__VA_ARGS__)) };                         \
}                                                                     \
                                                                      \
struct EnumName {                                                     \
    using _underlying = Underlying;                                   \
    enum _enum : _underlying { __VA_ARGS__ };                         \
                                                                      \
    const char * _to_string() const                                   \
    {                                                                 \
        for (size_t index = 0; index < data_ ## EnumName::_size;      \
             ++index) {                                               \
                                                                      \
            if (data_ ## EnumName::_values[index] == _value)          \
                return _trimmed_names()[index];                       \
        }                                                             \
                                                                      \
        throw std::runtime_error("invalid value");                    \
    }                                                                 \
                                                                      \
    constexpr static EnumName _from_string(const char *s,             \
                                           size_t index = 0)          \
    {                                                                 \
        return                                                        \
            index >= data_ ## EnumName::_size ?                       \
                    throw std::runtime_error("invalid identifier") :  \
            matches_untrimmed(                                        \
                data_ ## EnumName::_raw_names[index], s) ?            \
                    (EnumName)(_enum)data_ ## EnumName::_values[      \
                                                            index] :  \
            _from_string(s, index + 1);                               \
    }                                                                 \
                                                                      \
    EnumName() = delete;                                              \
    constexpr EnumName(_enum value) : _value(value) { }               \
    constexpr operator _enum() const { return (_enum)_value; }        \
                                                                      \
  private:                                                            \
    _underlying     _value;                                           \
                                                                      \
    static const char * const * _trimmed_names()                      \
    {                                                                 \
        static char     *the_names[data_ ## EnumName::_size];         \
        static bool     initialized = false;                          \
                                                                      \
        if (!initialized) {                                           \
            for (size_t index = 0; index < data_ ## EnumName::_size;  \
                 ++index) {                                           \
                                                                      \
                size_t  length =                                      \
                    std::strcspn(data_ ## EnumName::_raw_names[index],\
                                 terminators);                        \
                                                                      \
                the_names[index] = new char[length + 1];              \
                                                                      \
                std::strncpy(the_names[index],                        \
                             data_ ## EnumName::_raw_names[index],    \
                             length);                                 \
                the_names[index][length] = '[=13=]';                      \
            }                                                         \
                                                                      \
            initialized = true;                                       \
        }                                                             \
                                                                      \
        return the_names;                                             \
    }                                                                 \
};

// The code above was a "header file". This is a program that uses it.
#include <iostream>
#include "the_file_above.h"

ENUM(Channel, char, Red = 1, Green, Blue)

constexpr Channel   channel = Channel::_from_string("Red");

int main()
{
    std::cout << channel._to_string() << std::endl;

    switch (channel) {
        case Channel::Red:   return 0;
        case Channel::Green: return 1;
        case Channel::Blue:  return 2;
    }
}

static_assert(sizeof(Channel) == sizeof(char), "");

上面的程序打印出 Red,如您所料。存在一定程度的类型安全性,因为您不能在不初始化枚举的情况下创建它,并且从 switch 中删除其中一个案例将导致编译器发出警告(取决于您的编译器和标志)。另外,请注意 "Red" 在编译期间被转换为枚举。

我写了一个库来解决这个问题,一切都在编译时发生,除了获取消息。

用法:

使用宏DEF_MSG定义宏和消息对:

DEF_MSG(CODE_OK,   "OK!")
DEF_MSG(CODE_FAIL, "Fail!")

CODE_OK是要使用的宏,"OK!"是对应的消息。

使用 get_message() 或仅 gm() 获取消息:

get_message(CODE_FAIL);  // will return "Fail!"
gm(CODE_FAIL);           // works exactly the same as above

使用MSG_NUM 找出定义了多少个宏。这会自动增加,你不需要做任何事情。

预定义消息:

MSG_OK:     OK
MSG_BOTTOM: Message bottom

项目:libcodemsg


库不会创建额外的数据。一切都发生在编译时。在message_def.h中,它生成一个名为MSG_CODEenum;在 message_def.c 中,它生成一个变量,其中包含 static const char* _g_messages[].

中的所有字符串

在这种情况下,图书馆仅限于创建一个 enum。这非常适合 return 值,例如:

MSG_CODE foo(void) {
    return MSG_OK; // or something else
}

MSG_CODE ret = foo();

if (MSG_OK != ret) {
    printf("%s\n", gm(ret););
}

我喜欢这个设计的另一件事是您可以管理不同文件中的消息定义。


我发现 this question 的解决方案看起来好多了。

#define ENUM_MAKE(TYPE, ...) \
        enum class TYPE {__VA_ARGS__};\
        struct Helper_ ## TYPE { \
            static const String& toName(TYPE type) {\
                int index = static_cast<int>(type);\
                return splitStringVec()[index];}\
            static const TYPE toType(const String& name){\
                static std::unordered_map<String,TYPE> typeNameMap;\
                if( typeNameMap.empty() )\
                {\
                    const StringVector& ssVec = splitStringVec();\
                    for (size_t i = 0; i < ssVec.size(); ++i)\
                        typeNameMap.insert(std::make_pair(ssVec[i], static_cast<TYPE>(i)));\
                }\
                return typeNameMap[name];}\
            static const StringVector& splitStringVec() {\
                static StringVector typeNameVector;\
                if(typeNameVector.empty()) \
                {\
                    typeNameVector = StringUtil::split(#__VA_ARGS__, ",");\
                    for (auto& name : typeNameVector)\
                    {\
                        name.erase(std::remove(name.begin(), name.end(), ' '),name.end()); \
                        name = String(#TYPE) + "::" + name;\
                    }\
                }\
                return typeNameVector;\
            }\
        };


using String = std::string;
using StringVector = std::vector<String>;

   StringVector StringUtil::split( const String& str, const String& delims, unsigned int maxSplits, bool preserveDelims)
    {
        StringVector ret;
        // Pre-allocate some space for performance
        ret.reserve(maxSplits ? maxSplits+1 : 10);    // 10 is guessed capacity for most case

        unsigned int numSplits = 0;

        // Use STL methods 
        size_t start, pos;
        start = 0;
        do 
        {
            pos = str.find_first_of(delims, start);
            if (pos == start)
            {
                // Do nothing
                start = pos + 1;
            }
            else if (pos == String::npos || (maxSplits && numSplits == maxSplits))
            {
                // Copy the rest of the string
                ret.push_back( str.substr(start) );
                break;
            }
            else
            {
                // Copy up to delimiter
                ret.push_back( str.substr(start, pos - start) );

                if(preserveDelims)
                {
                    // Sometimes there could be more than one delimiter in a row.
                    // Loop until we don't find any more delims
                    size_t delimStart = pos, delimPos;
                    delimPos = str.find_first_not_of(delims, delimStart);
                    if (delimPos == String::npos)
                    {
                        // Copy the rest of the string
                        ret.push_back( str.substr(delimStart) );
                    }
                    else
                    {
                        ret.push_back( str.substr(delimStart, delimPos - delimStart) );
                    }
                }

                start = pos + 1;
            }
            // parse up to next real data
            start = str.find_first_not_of(delims, start);
            ++numSplits;

        } while (pos != String::npos);



        return ret;
    }

例子

ENUM_MAKE(MY_TEST, MY_1, MY_2, MY_3)


    MY_TEST s1 = MY_TEST::MY_1;
    MY_TEST s2 = MY_TEST::MY_2;
    MY_TEST s3 = MY_TEST::MY_3;

    String z1 = Helper_MY_TEST::toName(s1);
    String z2 = Helper_MY_TEST::toName(s2);
    String z3 = Helper_MY_TEST::toName(s3);

    MY_TEST q1 = Helper_MY_TEST::toType(z1);
    MY_TEST q2 = Helper_MY_TEST::toType(z2);
    MY_TEST q3 = Helper_MY_TEST::toType(z3);

自动 ENUM_MAKE 宏生成 'enum class' 和助手 class 与 'enum reflection function'。

为了减少错误,一下子Everything只定义了一个ENUM_MAKE。

这个代码的优点是自动创建供反思和细看宏代码,代码简单易懂。 'enum to string' , 'string to enum' 性能都是算法 O(1).

缺点是第一次使用时,枚举反射的字符串向量和映射的助手 class 被初始化。 但如果你愿意,你也会被预初始化。 –

我的解决方案是不使用宏。

优势:

  • 你做的一目了然
  • 访问是通过散列映射进行的,非常适合许多有价值的枚举
  • 无需考虑顺序或非连续值
  • 枚举到字符串和字符串到枚举的转换,而添加的枚举值只能添加到一个额外的位置

缺点:

  • 您需要将所有枚举值复制为文本
  • 哈希映射中的访问必须考虑字符串大小写
  • 如果添加值很痛苦,则进行维护 - 必须同时添加枚举和直接转换映射

所以...直到 C++ 实现 C# Enum.Parse 功能的那一天,我将坚持这一点:

            #include <unordered_map>

            enum class Language
            { unknown, 
                Chinese, 
                English, 
                French, 
                German
                // etc etc
            };

            class Enumerations
            {
            public:
                static void fnInit(void);

                static std::unordered_map <std::wstring, Language> m_Language;
                static std::unordered_map <Language, std::wstring> m_invLanguage;

            private:
                static void fnClear();
                static void fnSetValues(void);
                static void fnInvertValues(void);

                static bool m_init_done;
            };

            std::unordered_map <std::wstring, Language> Enumerations::m_Language = std::unordered_map <std::wstring, Language>();
            std::unordered_map <Language, std::wstring> Enumerations::m_invLanguage = std::unordered_map <Language, std::wstring>();

            void Enumerations::fnInit()
            {
                fnClear();
                fnSetValues();
                fnInvertValues();
            }

            void Enumerations::fnClear()
            {
                m_Language.clear();
                m_invLanguage.clear();
            }

            void Enumerations::fnSetValues(void)
            {   
                m_Language[L"unknown"] = Language::unknown;
                m_Language[L"Chinese"] = Language::Chinese;
                m_Language[L"English"] = Language::English;
                m_Language[L"French"] = Language::French;
                m_Language[L"German"] = Language::German;
                // and more etc etc
            }

            void Enumerations::fnInvertValues(void)
            {
                for (auto it = m_Language.begin(); it != m_Language.end(); it++)
                {
                    m_invLanguage[it->second] = it->first;
                }
            }

            // usage -
            //Language aLanguage = Language::English;
            //wstring sLanguage = Enumerations::m_invLanguage[aLanguage];

            //wstring sLanguage = L"French" ;
            //Language aLanguage = Enumerations::m_Language[sLanguage];

以下解决方案基于给定枚举的 std::array<std::string,N>

对于 enumstd::string 的转换,我们可以将枚举转换为 size_t 并从数组中查找字符串。该操作是 O(1) 并且不需要堆分配。

#include <boost/preprocessor/seq/transform.hpp>
#include <boost/preprocessor/seq/enum.hpp>
#include <boost/preprocessor/stringize.hpp>

#include <string>
#include <array>
#include <iostream>

#define STRINGIZE(s, data, elem) BOOST_PP_STRINGIZE(elem)

// ENUM
// ============================================================================
#define ENUM(X, SEQ) \
struct X {   \
    enum Enum {BOOST_PP_SEQ_ENUM(SEQ)}; \
    static const std::array<std::string,BOOST_PP_SEQ_SIZE(SEQ)> array_of_strings() { \
        return {{BOOST_PP_SEQ_ENUM(BOOST_PP_SEQ_TRANSFORM(STRINGIZE, 0, SEQ))}}; \
    } \
    static std::string to_string(Enum e) { \
        auto a = array_of_strings(); \
        return a[static_cast<size_t>(e)]; \
    } \
}

对于 std::stringenum 的转换,我们必须对数组进行线性搜索并将数组索引转换为 enum.

在这里尝试使用示例:http://coliru.stacked-crooked.com/a/e4212f93bee65076

编辑: 修改了我的解决方案,因此可以在 class.

中使用自定义枚举

几天前我遇到了同样的问题。如果没有一些奇怪的宏魔法,我找不到任何 C++ 解决方案,所以我决定编写 a CMake code generator 来生成简单的 switch case 语句。

用法:

enum2str_generate(
  PATH          <path to place the files in>
  CLASS_NAME    <name of the class (also prefix for the files)>
  FUNC_NAME     <name of the (static) member function>
  NAMESPACE     <the class will be inside this namespace>
  INCLUDES      <LIST of files where the enums are defined>
  ENUMS         <LIST of enums to process>
  BLACKLIST     <LIST of constants to ignore>
  USE_CONSTEXPR <whether to use constexpr or not (default: off)>
  USE_C_STRINGS <whether to use c strings instead of std::string or not (default: off)>
)

该函数搜索文件系统中的包含文件(使用 include_directories 命令提供的包含目录),读取它们并执行一些正则表达式以生成 class 和函数.

注意:constexpr 在 C++ 中暗示内联,因此使用 USE_CONSTEXPR 选项将仅生成 header class!

示例:

./includes/a.h:

enum AAA : char { A1, A2 };

typedef enum {
   VAL1          = 0,
   VAL2          = 1,
   VAL3          = 2,
   VAL_FIRST     = VAL1,    // Ignored
   VAL_LAST      = VAL3,    // Ignored
   VAL_DUPLICATE = 1,       // Ignored
   VAL_STRANGE   = VAL2 + 1 // Must be blacklisted
} BBB;

./CMakeLists.txt:

include_directories( ${PROJECT_SOURCE_DIR}/includes ...)

enum2str_generate(
   PATH       "${PROJECT_SOURCE_DIR}"
   CLASS_NAME "enum2Str"
   NAMESPACE  "abc"
   FUNC_NAME  "toStr"
   INCLUDES   "a.h" # WITHOUT directory
   ENUMS      "AAA" "BBB"
   BLACKLIST  "VAL_STRANGE")

生成:

./enum2Str.hpp:

/*!
  * \file enum2Str.hpp
  * \warning This is an automatically generated file!
  */

#ifndef ENUM2STR_HPP
#define ENUM2STR_HPP

#include <string>
#include <a.h>

namespace abc {

class enum2Str {
 public:
   static std::string toStr( AAA _var ) noexcept;
   static std::string toStr( BBB _var ) noexcept;
};

}

#endif // ENUM2STR_HPP

./enum2Str.cpp:

/*!
  * \file enum2Str.cpp
  * \warning This is an automatically generated file!
  */

#include "enum2Str.hpp"

namespace abc {

/*!
 * \brief Converts the enum AAA to a std::string
 * \param _var The enum value to convert
 * \returns _var converted to a std::string
 */
std::string enum2Str::toStr( AAA _var ) noexcept {
   switch ( _var ) {
      case A1: return "A1";
      case A2: return "A2";
      default: return "<UNKNOWN>";
   }
}

/*!
 * \brief Converts the enum BBB to a std::string
 * \param _var The enum value to convert
 * \returns _var converted to a std::string
 */
std::string enum2Str::toStr( BBB _var ) noexcept {
   switch ( _var ) {
      case VAL1: return "VAL1";
      case VAL2: return "VAL2";
      case VAL3: return "VAL3";
      default: return "<UNKNOWN>";
   }
}
}

更新:

脚本现在还支持范围枚举(enum class|struct)和 我将它与我经常使用的其他一些脚本一起移到了单独的仓库中:https://github.com/mensinda/cmakeBuildTools

只需生成您的枚举。为此目的编写生成器大约需要五分钟的工作。

java 和 python 中的生成器代码,非常容易移植到您喜欢的任何语言,包括 C++。

也非常容易通过您想要的任何功能进行扩展。

示例输入:

First = 5
Second
Third = 7
Fourth
Fifth=11

生成header:

#include <iosfwd>

enum class Hallo
{
    First = 5,
    Second = 6,
    Third = 7,
    Fourth = 8,
    Fifth = 11
};

std::ostream & operator << (std::ostream &, const Hallo&);

生成的cpp文件

#include <ostream>

#include "Hallo.h"

std::ostream & operator << (std::ostream &out, const Hallo&value)
{
    switch(value)
    {
    case Hallo::First:
        out << "First";
        break;
    case Hallo::Second:
        out << "Second";
        break;
    case Hallo::Third:
        out << "Third";
        break;
    case Hallo::Fourth:
        out << "Fourth";
        break;
    case Hallo::Fifth:
        out << "Fifth";
        break;
    default:
        out << "<unknown>";
    }

    return out;
}

还有生成器,以非常简洁的形式作为移植和扩展的模板。此示例代码确实试图避免覆盖任何文件,但仍需您自担风险。

package cppgen;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.nio.charset.Charset;
import java.util.LinkedHashMap;
import java.util.Map;
import java.util.Map.Entry;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class EnumGenerator
{
    static void fail(String message)
    {
        System.err.println(message);
        System.exit(1);
    }

    static void run(String[] args)
    throws Exception
    {
        Pattern pattern = Pattern.compile("\s*(\w+)\s*(?:=\s*(\d+))?\s*", Pattern.UNICODE_CHARACTER_CLASS);
        Charset charset = Charset.forName("UTF8");
        String tab = "    ";

        if (args.length != 3)
        {
            fail("Required arguments: <enum name> <input file> <output dir>");
        }

        String enumName = args[0];

        File inputFile = new File(args[1]);

        if (inputFile.isFile() == false)
        {
            fail("Not a file: [" + inputFile.getCanonicalPath() + "]");
        }

        File outputDir = new File(args[2]);

        if (outputDir.isDirectory() == false)
        {
            fail("Not a directory: [" + outputDir.getCanonicalPath() + "]");
        }

        File headerFile = new File(outputDir, enumName + ".h");
        File codeFile = new File(outputDir, enumName + ".cpp");

        for (File file : new File[] { headerFile, codeFile })
        {
            if (file.exists())
            {
                fail("Will not overwrite file [" + file.getCanonicalPath() + "]");
            }
        }

        int nextValue = 0;

        Map<String, Integer> fields = new LinkedHashMap<>();

        try
        (
            BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream(inputFile), charset));
        )
        {
            while (true)
            {
                String line = reader.readLine();

                if (line == null)
                {
                    break;
                }

                if (line.trim().length() == 0)
                {
                    continue;
                }

                Matcher matcher = pattern.matcher(line);

                if (matcher.matches() == false)
                {
                    fail("Syntax error: [" + line + "]");
                }

                String fieldName = matcher.group(1);

                if (fields.containsKey(fieldName))
                {
                    fail("Double fiend name: " + fieldName);
                }

                String valueString = matcher.group(2);

                if (valueString != null)
                {
                    int value = Integer.parseInt(valueString);

                    if (value < nextValue)
                    {
                        fail("Not a monotonous progression from " + nextValue + " to " + value + " for enum field " + fieldName);
                    }

                    nextValue = value;
                }

                fields.put(fieldName, nextValue);

                ++nextValue;
            }
        }

        try
        (
            PrintWriter headerWriter = new PrintWriter(new OutputStreamWriter(new FileOutputStream(headerFile), charset));
            PrintWriter codeWriter = new PrintWriter(new OutputStreamWriter(new FileOutputStream(codeFile), charset));
        )
        {
            headerWriter.println();
            headerWriter.println("#include <iosfwd>");
            headerWriter.println();
            headerWriter.println("enum class " + enumName);
            headerWriter.println('{');
            boolean first = true;
            for (Entry<String, Integer> entry : fields.entrySet())
            {
                if (first == false)
                {
                    headerWriter.println(",");
                }

                headerWriter.print(tab + entry.getKey() + " = " + entry.getValue());

                first = false;
            }
            if (first == false)
            {
                headerWriter.println();
            }
            headerWriter.println("};");
            headerWriter.println();
            headerWriter.println("std::ostream & operator << (std::ostream &, const " + enumName + "&);");
            headerWriter.println();

            codeWriter.println();
            codeWriter.println("#include <ostream>");
            codeWriter.println();
            codeWriter.println("#include \"" + enumName + ".h\"");
            codeWriter.println();
            codeWriter.println("std::ostream & operator << (std::ostream &out, const " + enumName + "&value)");
            codeWriter.println('{');
            codeWriter.println(tab + "switch(value)");
            codeWriter.println(tab + '{');
            first = true;
            for (Entry<String, Integer> entry : fields.entrySet())
            {
                codeWriter.println(tab + "case " + enumName + "::" + entry.getKey() + ':');
                codeWriter.println(tab + tab + "out << \"" + entry.getKey() + "\";");
                codeWriter.println(tab + tab + "break;");

                first = false;
            }
            codeWriter.println(tab + "default:");
            codeWriter.println(tab + tab + "out << \"<unknown>\";");
            codeWriter.println(tab + '}');
            codeWriter.println();
            codeWriter.println(tab + "return out;");
            codeWriter.println('}');
            codeWriter.println();
        }
    }

    public static void main(String[] args)
    {
        try
        {
            run(args);
        }
        catch(Exception exc)
        {
            exc.printStackTrace();
            System.exit(1);
        }
    }
}

以及 Python 3.5 的端口,因为不同之处足以提供潜在帮助

import re
import collections
import sys
import io
import os

def fail(*args):
    print(*args)
    exit(1)

pattern = re.compile(r'\s*(\w+)\s*(?:=\s*(\d+))?\s*')
tab = "    "

if len(sys.argv) != 4:
    n=0
    for arg in sys.argv:
        print("arg", n, ":", arg, " / ", sys.argv[n])
        n += 1
    fail("Required arguments: <enum name> <input file> <output dir>")

enumName = sys.argv[1]

inputFile = sys.argv[2]

if not os.path.isfile(inputFile):
    fail("Not a file: [" + os.path.abspath(inputFile) + "]")

outputDir = sys.argv[3]

if not os.path.isdir(outputDir):
    fail("Not a directory: [" + os.path.abspath(outputDir) + "]")

headerFile = os.path.join(outputDir, enumName + ".h")
codeFile = os.path.join(outputDir, enumName + ".cpp")

for file in [ headerFile, codeFile ]:
    if os.path.exists(file):
        fail("Will not overwrite file [" + os.path.abspath(file) + "]")

nextValue = 0

fields = collections.OrderedDict()

for line in open(inputFile, 'r'):
    line = line.strip()

    if len(line) == 0:
        continue

    match = pattern.match(line)

    if match == None:
        fail("Syntax error: [" + line + "]")

    fieldName = match.group(1)

    if fieldName in fields:
        fail("Double field name: " + fieldName)

    valueString = match.group(2)

    if valueString != None:
        value = int(valueString)

        if value < nextValue:
            fail("Not a monotonous progression from " + nextValue + " to " + value + " for enum field " + fieldName)

        nextValue = value

    fields[fieldName] = nextValue

    nextValue += 1

headerWriter = open(headerFile, 'w')
codeWriter = open(codeFile, 'w')

try:
    headerWriter.write("\n")
    headerWriter.write("#include <iosfwd>\n")
    headerWriter.write("\n")
    headerWriter.write("enum class " + enumName + "\n")
    headerWriter.write("{\n")
    first = True
    for fieldName, fieldValue in fields.items():
        if not first:
            headerWriter.write(",\n")

        headerWriter.write(tab + fieldName + " = " + str(fieldValue))

        first = False
    if not first:
        headerWriter.write("\n")
    headerWriter.write("};\n")
    headerWriter.write("\n")
    headerWriter.write("std::ostream & operator << (std::ostream &, const " + enumName + "&);\n")
    headerWriter.write("\n")

    codeWriter.write("\n")
    codeWriter.write("#include <ostream>\n")
    codeWriter.write("\n")
    codeWriter.write("#include \"" + enumName + ".h\"\n")
    codeWriter.write("\n")
    codeWriter.write("std::ostream & operator << (std::ostream &out, const " + enumName + "&value)\n")
    codeWriter.write("{\n")
    codeWriter.write(tab + "switch(value)\n")
    codeWriter.write(tab + "{\n")
    for fieldName in fields.keys():
        codeWriter.write(tab + "case " + enumName + "::" + fieldName + ":\n")
        codeWriter.write(tab + tab + "out << \"" + fieldName + "\";\n")
        codeWriter.write(tab + tab + "break;\n")
    codeWriter.write(tab + "default:\n")
    codeWriter.write(tab + tab + "out << \"<unknown>\";\n")
    codeWriter.write(tab + "}\n")
    codeWriter.write("\n")
    codeWriter.write(tab + "return out;\n")
    codeWriter.write("}\n")
    codeWriter.write("\n")
finally:
    headerWriter.close()
    codeWriter.close()

在 class/struct 中使用枚举的解决方案(结构默认为 public 成员)和重载运算符:

struct Color
{
    enum Enum { RED, GREEN, BLUE };
    Enum e;

    Color() {}
    Color(Enum e) : e(e) {}

    Color operator=(Enum o) { e = o; return *this; }
    Color operator=(Color o) { e = o.e; return *this; }
    bool operator==(Enum o) { return e == o; }
    bool operator==(Color o) { return e == o.e; }
    operator Enum() const { return e; }

    std::string toString() const
    {
        switch (e)
        {
        case Color::RED:
            return "red";
        case Color::GREEN:
            return "green";
        case Color::BLUE:
            return "blue";
        default:
            return "unknown";
        }
    }
};

从外面看,它看起来几乎完全像一个 class 枚举:

Color red;
red = Color::RED;
Color blue = Color::BLUE;

cout << red.toString() << " " << Color::GREEN << " " << blue << endl;

这将输出"red 1 2"。您可能会重载 << 以使蓝色输出成为字符串(尽管它可能会导致歧义,因此不可能),但它不适用于 Color::GREEN 因为它不会自动转换为 Color.

隐式转换为枚举(隐式转换为 int 或给定类型)的目的是能够做到:

Color color;
switch (color) ...

这行得通,但这也意味着它也行得通:

int i = color;

使用枚举 class 它不会编译。 如果重载两个采用枚举和整数的函数,或者删除隐式转换,你应该小心...

另一种解决方案涉及使用实际枚举 class 和静态成员:

struct Color
{
    enum class Enum { RED, GREEN, BLUE };
    static const Enum RED = Enum::RED, GREEN = Enum::GREEN, BLUE = Enum::BLUE;

    //same as previous...
};

它可能需要更多 space,并且制作时间更长,但会导致隐式 int 转换的编译错误。因此我会使用这个!

虽然这肯定有开销,但我认为它比我见过的其他代码更简单并且看起来更好。还有可能添加功能,这些功能都可以在 class.

范围内

编辑:这行得通并且大部分可以在执行前编译:

class Color
{
public:
    enum class Enum { RED, GREEN, BLUE };
    static const Enum RED = Enum::RED, GREEN = Enum::GREEN, BLUE = Enum::BLUE;

    constexpr Color() : e(Enum::RED) {}
    constexpr Color(Enum e) : e(e) {}

    constexpr bool operator==(Enum o) const { return e == o; }
    constexpr bool operator==(Color o) const { return e == o.e; }
    constexpr operator Enum() const { return e; }

    Color& operator=(Enum o) { const_cast<Enum>(this->e) = o; return *this; }
    Color& operator=(Color o) { const_cast<Enum>(this->e) = o.e; return *this; }

    std::string toString() const
    {
        switch (e)
        {
        case Enum::RED:
            return "red";
        case Enum::GREEN:
            return "green";
        case Enum::BLUE:
            return "blue";
        default:
            return "unknown";
        }
    }
private:
    const Enum e;
};

gist 提供基于 C++ 可变参数模板的简单映射。

这是来自 gist 的 type-based 映射的 C++17 简化版本:

#include <cstring> // 

template<typename KeyValue, typename ... RestOfKeyValues>
struct map {
  static constexpr typename KeyValue::key_t get(const char* val) noexcept {
    if constexpr (sizeof...(RestOfKeyValues)==0)  // C++17 if constexpr
      return KeyValue::key; // Returns last element
    else {
      static_assert(KeyValue::val != nullptr,
                  "Only last element may have null name");
      return strcmp(val, KeyValue::val()) 
            ? map<RestOfKeyValues...>::get(val) : KeyValue::key;
    }
  }
  static constexpr const char* get(typename KeyValue::key_t key) noexcept {
    if constexpr (sizeof...(RestOfKeyValues)==0)
      return (KeyValue::val != nullptr) && (key == KeyValue::key)
            ? KeyValue::val() : "";
    else
      return (key == KeyValue::key) 
            ? KeyValue::val() : map<RestOfKeyValues...>::get(key);
  }
};

template<typename Enum, typename ... KeyValues>
class names {
  typedef map<KeyValues...> Map;
public:
  static constexpr Enum get(const char* nam) noexcept {
    return Map::get(nam);
  }
  static constexpr const char* get(Enum key) noexcept {
    return Map::get(key);
  }
};

用法示例:

enum class fasion {
    fancy,
    classic,
    sporty,
    emo,
    __last__ = emo,
    __unknown__ = -1
};

#define NAME(s) static inline constexpr const char* s() noexcept {return #s;}
namespace name {
    NAME(fancy)
    NAME(classic)
    NAME(sporty)
    NAME(emo)
}

template<auto K, const char* (*V)()>  // C++17 template<auto>
struct _ {
    typedef decltype(K) key_t;
    typedef decltype(V) name_t;
    static constexpr key_t  key = K; // enum id value
    static constexpr name_t val = V; // enum id name
};

typedef names<fasion,
    _<fasion::fancy, name::fancy>,
    _<fasion::classic, name::classic>,
    _<fasion::sporty, name::sporty>,
    _<fasion::emo, name::emo>,
    _<fasion::__unknown__, nullptr>
> fasion_names;

map<KeyValues...>可以双向使用:

  • fasion_names::get(fasion::emo)
  • fasion_names::get("emo")

此示例可在 godbolt.org

int main ()
{
  constexpr auto str = fasion_names::get(fasion::emo);
  constexpr auto fsn = fasion_names::get(str);
  return (int) fsn;
}

结果来自 gcc-7 -std=c++1z -Ofast -S

main:
        mov     eax, 3
        ret

如果你的enum看起来像

enum MyEnum
{
  AAA = -8,
  BBB = '8',
  CCC = AAA + BBB
};

您可以将 enum 的内容移动到新文件:

AAA = -8,
BBB = '8',
CCC = AAA + BBB

然后值可以被宏包围:

// default definition
#ifned ITEM(X,Y)
#define ITEM(X,Y)
#endif

// Items list
ITEM(AAA,-8)
ITEM(BBB,'8')
ITEM(CCC,AAA+BBB)

// clean up
#undef ITEM

下一步可能会再次包含 enum 中的项目:

enum MyEnum
{
  #define ITEM(X,Y) X=Y,
  #include "enum_definition_file"
};

最后你可以生成关于这个的实用函数 enum:

std::string ToString(MyEnum value)
{
  switch( value )
  {
    #define ITEM(X,Y) case X: return #X;
    #include "enum_definition_file"
  }

  return "";
}

MyEnum FromString(std::string const& value)
{
  static std::map<std::string,MyEnum> converter
  {
    #define ITEM(X,Y) { #X, X },
    #include "enum_definition_file"
  };

  auto it = converter.find(value);
  if( it != converter.end() )
    return it->second;
  else
    throw std::runtime_error("Value is missing");
}

该解决方案可应用于较早的 C++ 标准,它不使用现代 C++ 元素,但可用于生成大量代码而无需过多的工作和维护。

嗯,还有一个选择。一个典型的用例是您需要 HTTP 动词的常量以及使用其字符串版本值。

例子:

int main () {

  VERB a = VERB::GET;
  VERB b = VERB::GET;
  VERB c = VERB::POST;
  VERB d = VERB::PUT;
  VERB e = VERB::DELETE;


  std::cout << a.toString() << std::endl;

  std::cout << a << std::endl;

  if ( a == VERB::GET ) {
    std::cout << "yes" << std::endl;
  }

  if ( a == b ) {
    std::cout << "yes" << std::endl;
  }

  if ( a != c ) {
    std::cout << "no" << std::endl;
  }

}

动词class:

// -----------------------------------------------------------
// -----------------------------------------------------------
class VERB {

private:

  // private constants
  enum Verb {GET_=0, POST_, PUT_, DELETE_};

  // private string values
  static const std::string theStrings[];

  // private value
  const Verb value;
  const std::string text;

  // private constructor
  VERB (Verb v) :
  value(v), text (theStrings[v])
  {
    // std::cout << " constructor \n";
  }

public:

  operator const char * ()  const { return text.c_str(); }

  operator const std::string ()  const { return text; }

  const std::string toString () const { return text; }

  bool operator == (const VERB & other) const { return (*this).value == other.value; }

  bool operator != (const VERB & other) const { return ! ( (*this) == other); }

  // ---

  static const VERB GET;
  static const VERB POST;
  static const VERB PUT;
  static const VERB DELETE;

};

const std::string VERB::theStrings[] = {"GET", "POST", "PUT", "DELETE"};

const VERB VERB::GET = VERB ( VERB::Verb::GET_ );
const VERB VERB::POST = VERB ( VERB::Verb::POST_ );
const VERB VERB::PUT = VERB ( VERB::Verb::PUT_ );
const VERB VERB::DELETE = VERB ( VERB::Verb::DELETE_ );
// end of file

非常简单的解决方案,但有一个很大的限制:您不能将自定义值分配给 enum 值,但使用正确的正则表达式,您可以。您还可以添加一个地图以将它们转换回 enum 值,而无需付出更多努力:

#include <vector>
#include <string>
#include <regex>
#include <iterator>

std::vector<std::string> split(const std::string& s, 
                               const std::regex& delim = std::regex(",\s*"))
{
    using namespace std;
    vector<string> cont;
    copy(regex_token_iterator<string::const_iterator>(s.begin(), s.end(), delim, -1), 
         regex_token_iterator<string::const_iterator>(),
         back_inserter(cont));
    return cont;
}

#define EnumType(Type, ...)     enum class Type { __VA_ARGS__ }

#define EnumStrings(Type, ...)  static const std::vector<std::string> \
                                Type##Strings = split(#__VA_ARGS__);

#define EnumToString(Type, ...) EnumType(Type, __VA_ARGS__); \
                                EnumStrings(Type, __VA_ARGS__)

用法示例:

EnumToString(MyEnum, Red, Green, Blue);

我也被这个问题困扰了很长时间,还有以正确的方式将类型转换为字符串的问题。然而,对于最后一个问题,我对Is it possible to print a variable's type in standard C++?, using the idea from 中解释的解决方案感到惊讶。使用这种技术,可以构造一个类似的函数来获取枚举值作为字符串:

#include <iostream>
using namespace std;

class static_string
{
    const char* const p_;
    const std::size_t sz_;

public:
    typedef const char* const_iterator;

    template <std::size_t N>
    constexpr static_string(const char(&a)[N]) noexcept
        : p_(a)
        , sz_(N - 1)
    {}

    constexpr static_string(const char* p, std::size_t N) noexcept
        : p_(p)
        , sz_(N)
    {}

    constexpr const char* data() const noexcept { return p_; }
    constexpr std::size_t size() const noexcept { return sz_; }

    constexpr const_iterator begin() const noexcept { return p_; }
    constexpr const_iterator end()   const noexcept { return p_ + sz_; }

    constexpr char operator[](std::size_t n) const
    {
        return n < sz_ ? p_[n] : throw std::out_of_range("static_string");
    }
};

inline std::ostream& operator<<(std::ostream& os, static_string const& s)
{
    return os.write(s.data(), s.size());
}

/// \brief Get the name of a type
template <class T>
static_string typeName()
{
#ifdef __clang__
    static_string p = __PRETTY_FUNCTION__;
    return static_string(p.data() + 30, p.size() - 30 - 1);
#elif defined(_MSC_VER)
    static_string p = __FUNCSIG__;
    return static_string(p.data() + 37, p.size() - 37 - 7);
#endif

}

namespace details
{
    template <class Enum>
    struct EnumWrapper
    {
        template < Enum enu >
        static static_string name()
        {
#ifdef __clang__
            static_string p = __PRETTY_FUNCTION__;
            static_string enumType = typeName<Enum>();
            return static_string(p.data() + 73 + enumType.size(), p.size() - 73 - enumType.size() - 1);
#elif defined(_MSC_VER)
            static_string p = __FUNCSIG__;
            static_string enumType = typeName<Enum>();
            return static_string(p.data() + 57 + enumType.size(), p.size() - 57 - enumType.size() - 7);
#endif
        }
    };
}

/// \brief Get the name of an enum value
template <typename Enum, Enum enu>
static_string enumName()
{
    return details::EnumWrapper<Enum>::template name<enu>();
}

enum class Color
{
    Blue = 0,
    Yellow = 1
};


int main() 
{
    std::cout << "_" << typeName<Color>() << "_"  << std::endl;
    std::cout << "_" << enumName<Color, Color::Blue>() << "_"  << std::endl;
    return 0;
}

上面的代码仅在 Clang(参见 https://ideone.com/je5Quv)和 VS2015 上进行了测试,但应该可以通过稍微调整一下整数常量来适应其他编译器。当然,它仍然在后台使用宏,但至少不需要访问枚举实现。

我从@antron 那里得到了这个想法并以不同的方式实现了它:生成一个真正的 enum class

此实现满足原始问题中列出的所有要求,但目前只有一个真正的限制:它假定枚举值要么未提供,要么如果提供,则必须以0 并无间隙地依次上升。

这不是内在限制 - 只是我不使用临时枚举值。如果需要,可以用传统的 switch/case 实现替换矢量查找。

该解决方案对内联变量使用了一些 c++17,但如果需要,可以轻松避免这种情况。它也使用 boost:trim 因为简单。

最重要的是,它只需要 30 行代码,而且没有黑魔法宏。 代码如下。应该放在header中,包含在多个编译模块中。

可以按照本帖前面建议的方式使用它:

ENUM(Channel, int, Red, Green = 1, Blue)
std::out << "My name is " << Channel::Green;
//prints My name is Green

请告诉我这是否有用以及如何进一步改进。


#include <boost/algorithm/string.hpp>   
struct EnumSupportBase {
  static std::vector<std::string> split(const std::string s, char delim) {
    std::stringstream ss(s);
    std::string item;
    std::vector<std::string> tokens;
    while (std::getline(ss, item, delim)) {
        auto pos = item.find_first_of ('=');
        if (pos != std::string::npos)
            item.erase (pos);
        boost::trim (item);
        tokens.push_back(item);
    }
    return tokens;
  }
};
#define ENUM(EnumName, Underlying, ...) \
    enum class EnumName : Underlying { __VA_ARGS__, _count }; \
    struct EnumName ## Support : EnumSupportBase { \
        static inline std::vector<std::string> _token_names = split(#__VA_ARGS__, ','); \
        static constexpr const char* get_name(EnumName enum_value) { \
            int index = (int)enum_value; \
            if (index >= (int)EnumName::_count || index < 0) \
               return "???"; \
            else \
               return _token_names[index].c_str(); \
        } \
    }; \
    inline std::ostream& operator<<(std::ostream& os, const EnumName & es) { \
        return os << EnumName##Support::get_name(es); \
    } 

这与 Yuri Finkelstein 相似;但不需要提升。我正在使用地图,因此您可以为枚举分配任何值,任何顺序。

枚举声明 class 为:

DECLARE_ENUM_WITH_TYPE(TestEnumClass, int32_t, ZERO = 0x00, TWO = 0x02, ONE = 0x01, THREE = 0x03, FOUR);

以下代码将自动创建枚举 class 并重载:

  • '+' '+=' 对于 std::string
  • 流的“<<”
  • '~' 只是为了转换为字符串(任何一元运算符都可以,但为了清晰起见,我个人不喜欢它)
  • '*' 获取枚举数

无需提升,提供所有必需的功能。

代码:

#include <algorithm>
#include <iostream>
#include <map>
#include <sstream>
#include <string>
#include <vector>

#define STRING_REMOVE_CHAR(str, ch) str.erase(std::remove(str.begin(), str.end(), ch), str.end())

std::vector<std::string> splitString(std::string str, char sep = ',') {
    std::vector<std::string> vecString;
    std::string item;

    std::stringstream stringStream(str);

    while (std::getline(stringStream, item, sep))
    {
        vecString.push_back(item);
    }

    return vecString;
}

#define DECLARE_ENUM_WITH_TYPE(E, T, ...)                                                                     \
    enum class E : T                                                                                          \
    {                                                                                                         \
        __VA_ARGS__                                                                                           \
    };                                                                                                        \
    std::map<T, std::string> E##MapName(generateEnumMap<T>(#__VA_ARGS__));                                    \
    std::ostream &operator<<(std::ostream &os, E enumTmp)                                                     \
    {                                                                                                         \
        os << E##MapName[static_cast<T>(enumTmp)];                                                            \
        return os;                                                                                            \
    }                                                                                                         \
    size_t operator*(E enumTmp) { (void) enumTmp; return E##MapName.size(); }                                 \
    std::string operator~(E enumTmp) { return E##MapName[static_cast<T>(enumTmp)]; }                          \
    std::string operator+(std::string &&str, E enumTmp) { return str + E##MapName[static_cast<T>(enumTmp)]; } \
    std::string operator+(E enumTmp, std::string &&str) { return E##MapName[static_cast<T>(enumTmp)] + str; } \
    std::string &operator+=(std::string &str, E enumTmp)                                                      \
    {                                                                                                         \
        str += E##MapName[static_cast<T>(enumTmp)];                                                           \
        return str;                                                                                           \
    }                                                                                                         \
    E operator++(E &enumTmp)                                                                                  \
    {                                                                                                         \
        auto iter = E##MapName.find(static_cast<T>(enumTmp));                                                 \
        if (iter == E##MapName.end() || std::next(iter) == E##MapName.end())                                  \
            iter = E##MapName.begin();                                                                        \
        else                                                                                                  \
        {                                                                                                     \
            ++iter;                                                                                           \
        }                                                                                                     \
        enumTmp = static_cast<E>(iter->first);                                                                \
        return enumTmp;                                                                                       \
    }                                                                                                         \
    bool valid##E(T value) { return (E##MapName.find(value) != E##MapName.end()); }

#define DECLARE_ENUM(E, ...) DECLARE_ENUM_WITH_TYPE(E, int32_t, __VA_ARGS__)
template <typename T>
std::map<T, std::string> generateEnumMap(std::string strMap)
{
    STRING_REMOVE_CHAR(strMap, ' ');
    STRING_REMOVE_CHAR(strMap, '(');

    std::vector<std::string> enumTokens(splitString(strMap));
    std::map<T, std::string> retMap;
    T inxMap;

    inxMap = 0;
    for (auto iter = enumTokens.begin(); iter != enumTokens.end(); ++iter)
    {
        // Token: [EnumName | EnumName=EnumValue]
        std::string enumName;
        T enumValue;
        if (iter->find('=') == std::string::npos)
        {
            enumName = *iter;
        }
        else
        {
            std::vector<std::string> enumNameValue(splitString(*iter, '='));
            enumName = enumNameValue[0];
            //inxMap = static_cast<T>(enumNameValue[1]);
            if (std::is_unsigned<T>::value)
            {
                inxMap = static_cast<T>(std::stoull(enumNameValue[1], 0, 0));
            }
            else
            {
                inxMap = static_cast<T>(std::stoll(enumNameValue[1], 0, 0));
            }
        }
        retMap[inxMap++] = enumName;
    }

    return retMap;
}

示例:

DECLARE_ENUM_WITH_TYPE(TestEnumClass, int32_t, ZERO = 0x00, TWO = 0x02, ONE = 0x01, THREE = 0x03, FOUR);

int main(void) {
    TestEnumClass first, second;
    first = TestEnumClass::FOUR;
    second = TestEnumClass::TWO;

    std::cout << first << "(" << static_cast<uint32_t>(first) << ")" << std::endl; // FOUR(4)

    std::string strOne;
    strOne = ~first;
    std::cout << strOne << std::endl; // FOUR

    std::string strTwo;
    strTwo = ("Enum-" + second) + (TestEnumClass::THREE + "-test");
    std::cout << strTwo << std::endl; // Enum-TWOTHREE-test

    std::string strThree("TestEnumClass: ");
    strThree += second;
    std::cout << strThree << std::endl; // TestEnumClass: TWO
    std::cout << "Enum count=" << *first << std::endl;
}

您可以运行代码here

只要您愿意为每个可查询枚举编写单独的 .h/.cpp 对,此解决方案的语法和功能与常规 C++ 枚举几乎相同:

// MyEnum.h
#include <EnumTraits.h>
#ifndef ENUM_INCLUDE_MULTI
#pragma once
#end if

enum MyEnum : int ETRAITS
{
    EDECL(AAA) = -8,
    EDECL(BBB) = '8',
    EDECL(CCC) = AAA + BBB
};

.cpp 文件是 3 行样板文件:

// MyEnum.cpp
#define ENUM_DEFINE MyEnum
#define ENUM_INCLUDE <MyEnum.h>
#include <EnumTraits.inl>

用法示例:

for (MyEnum value : EnumTraits<MyEnum>::GetValues())
    std::cout << EnumTraits<MyEnum>::GetName(value) << std::endl;

代码

此解决方案需要 2 个源文件:

// EnumTraits.h
#pragma once
#include <string>
#include <unordered_map>
#include <vector>

#define ETRAITS
#define EDECL(x) x

template <class ENUM>
class EnumTraits
{
public:
    static const std::vector<ENUM>& GetValues()
    {
        return values;
    }

    static ENUM GetValue(const char* name)
    {
        auto match = valueMap.find(name);
        return (match == valueMap.end() ? ENUM() : match->second);
    }

    static const char* GetName(ENUM value)
    {
        auto match = nameMap.find(value);
        return (match == nameMap.end() ? nullptr : match->second);
    }

public:
    EnumTraits() = delete;

    using vector_type = std::vector<ENUM>;
    using name_map_type = std::unordered_map<ENUM, const char*>;
    using value_map_type = std::unordered_map<std::string, ENUM>;

private:
    static const vector_type values;
    static const name_map_type nameMap;
    static const value_map_type valueMap;
};

struct EnumInitGuard{ constexpr const EnumInitGuard& operator=(int) const { return *this; } };
template <class T> constexpr T& operator<<=(T&& x, const EnumInitGuard&) { return x; }

...和

// EnumTraits.inl
#define ENUM_INCLUDE_MULTI

#include ENUM_INCLUDE
#undef ETRAITS
#undef EDECL

using EnumType = ENUM_DEFINE;
using TraitsType = EnumTraits<EnumType>;
using VectorType = typename TraitsType::vector_type;
using NameMapType = typename TraitsType::name_map_type;
using ValueMapType = typename TraitsType::value_map_type;
using NamePairType = typename NameMapType::value_type;
using ValuePairType = typename ValueMapType::value_type;

#define ETRAITS ; const VectorType TraitsType::values
#define EDECL(x) EnumType::x <<= EnumInitGuard()
#include ENUM_INCLUDE
#undef ETRAITS
#undef EDECL

#define ETRAITS ; const NameMapType TraitsType::nameMap
#define EDECL(x) NamePairType(EnumType::x, #x) <<= EnumInitGuard()
#include ENUM_INCLUDE
#undef ETRAITS
#undef EDECL

#define ETRAITS ; const ValueMapType TraitsType::valueMap
#define EDECL(x) ValuePairType(#x, EnumType::x) <<= EnumInitGuard()
#include ENUM_INCLUDE
#undef ETRAITS
#undef EDECL

说明

此实现利用了以下事实:枚举定义的大括号元素列表也可用作 class 成员初始化的大括号初始化列表。

ETRAITSEnumTraits.inl 的上下文中计算时, 它扩展为 EnumTraits<> class 的静态成员定义。

EDECL 宏将每个枚举成员转换为初始化列表值,这些值随后被传递到成员构造函数中以填充枚举信息。

EnumInitGuard class 旨在使用枚举初始值设定项然后崩溃 - 留下一个纯粹的枚举数据列表。

好处

  • c++-类似语法
  • enumenum class 的工作方式相同(*几乎)
  • 适用于具有任何数字基础类型的 enum 类型
  • 适用于 enum 具有自动、显式和分段初始化值的类型
  • 适用于批量重命名(保留智能感知链接)
  • 只有 5 个预处理器符号(3 个全局)

* enums 相比,enum class 类型中引用同一枚举中其他值的初始化器必须具有完全限定的那些值

缺点

  • 每个可查询 enum
  • 需要单独的 .h/.cpp
  • 取决于复杂的 macroinclude 魔法
  • 小的语法错误会爆炸成更大的错误
  • 定义 classnamespace 作用域枚举很重要
  • 没有编译时初始化

评论

打开 EnumTraits.inl 时,Intellisense 会抱怨私有成员访问,但由于展开的宏实际上定义了 class 成员,所以这实际上不是问题。

头文件顶部的 #ifndef ENUM_INCLUDE_MULTI 块是一个小麻烦,可能会被缩小为宏或其他东西,但它足够小,可以在当前大小下使用。

声明命名空间范围的枚举需要首先在其命名空间范围内向前声明枚举,然后在全局命名空间中定义。此外,任何使用相同枚举值的枚举初始值设定项都必须具有完全限定的值。

namespace ns { enum MyEnum : int; }
enum ns::MyEnum : int ETRAITS
{
    EDECL(AAA) = -8,
    EDECL(BBB) = '8',
    EDECL(CCC) = ns::MyEnum::AAA + ns::MyEnum::BBB
}

我的答案在这里。

您可以同时获取枚举值名称和这些索引作为字符串的双端队列。

此方法只需要少量的复制粘贴和编辑。

当你需要枚举class类型的值时,得到的结果需要从size_t类型转换为枚举class类型,但我认为这是一种非常便携和强大的处理方式枚举 class.

enum class myenum
{
  one = 0,
  two,
  three,
};

deque<string> ssplit(const string &_src, boost::regex &_re)
{
  boost::sregex_token_iterator it(_src.begin(), _src.end(), _re, -1);
  boost::sregex_token_iterator e;
  deque<string> tokens;
  while (it != e)
    tokens.push_back(*it++);
  return std::move(tokens);
}

int main()
{
  regex re(",");
  deque<string> tokens = ssplit("one,two,three", re);
  for (auto &t : tokens) cout << t << endl;
    getchar();
  return 0;
}

您可以使用反射库,例如 Ponder

enum class MyEnum
{
    Zero = 0,
    One  = 1,
    Two  = 2
};

ponder::Enum::declare<MyEnum>()
    .value("Zero", MyEnum::Zero)
    .value("One",  MyEnum::One)
    .value("Two",  MyEnum::Two);

ponder::EnumObject zero(MyEnum::Zero);

zero.name(); // -> "Zero"

我不确定其他答案中是否已经涵盖了这种方法(实际上是,见下文)。我多次遇到这个问题,但没有找到不使用混淆宏或第三方库的解决方案。因此,我决定编写自己的混淆宏版本。

我要启用的相当于

enum class test1 { ONE, TWO = 13, SIX };

std::string toString(const test1& e) { ... }

int main() {
    test1 x;
    std::cout << toString(x) << "\n";
    std::cout << toString(test1::TWO) << "\n";
    std::cout << static_cast<std::underlying_type<test1>::type>(test1::TWO) << "\n";
    //std::cout << toString(123);// invalid
}

哪个应该打印

ONE
TWO
13

我不喜欢宏。但是,除非 c++ 本身支持将枚举转换为字符串,否则必须使用某种代码生成 and/or 宏(我怀疑这会很快发生)。我正在使用 X-macro

// x_enum.h
#include <string>
#include <map>
#include <type_traits>
#define x_begin enum class x_name {
#define x_val(X) X
#define x_value(X,Y) X = Y
#define x_end };
x_enum_def
#undef x_begin
#undef x_val
#undef x_value
#undef x_end

#define x_begin inline std::string toString(const x_name& e) { \
                static std::map<x_name,std::string> names = { 
#define x_val(X)      { x_name::X , #X }
#define x_value(X,Y)  { x_name::X , #X }
#define x_end }; return names[e]; }
x_enum_def
#undef x_begin
#undef x_val
#undef x_value
#undef x_end
#undef x_name
#undef x_enum_def

其中大部分是定义和取消定义符号,用户将通过包含将其作为参数传递给 X-marco。用法是这样的

#define x_name test1
#define x_enum_def x_begin x_val(ONE) , \
                           x_value(TWO,13) , \
                           x_val(SIX) \
                   x_end
#include "x_enum.h"

Live Demo

请注意,我还没有包括选择基础类型。到目前为止我不需要它,但应该直接修改代码以启用它。

写完才发现和很像。也许我以前读过它,也许它是灵感的主要来源。在我自己编写之前,我总是无法理解 X-macros ;)。

([=12= 的类似物],略有修改)。

这是我自己的解决方案,具有最少的定义魔法和对单个枚举分配的支持。

这是头文件:

#pragma once
#include <string>
#include <map>
#include <regex>

template <class Enum>
class EnumReflect
{
public:
    static const char* getEnums() { return ""; }
};

//
//  Just a container for each enumeration type.
//
template <class Enum>
class EnumReflectBase
{
public:
    static std::map<std::string, int> enum2int;
    static std::map<int, std::string> int2enum;

    static void EnsureEnumMapReady( const char* enumsInfo )
    {
        if (*enumsInfo == 0 || enum2int.size() != 0 )
            return;

        // Should be called once per each enumeration.
        std::string senumsInfo(enumsInfo);
        std::regex re("^([a-zA-Z_][a-zA-Z0-9_]+) *=? *([^,]*)(,|$) *");     // C++ identifier to optional " = <value>"
        std::smatch sm;
        int value = 0;

        for (; regex_search(senumsInfo, sm, re); senumsInfo = sm.suffix(), value++)
        {
            string enumName = sm[1].str();
            string enumValue = sm[2].str();

            if (enumValue.length() != 0)
                value = atoi(enumValue.c_str());

            enum2int[enumName] = value;
            int2enum[value] = enumName;
        }
    }
};

template <class Enum>
std::map<std::string, int> EnumReflectBase<Enum>::enum2int;

template <class Enum>
std::map<int, std::string> EnumReflectBase<Enum>::int2enum;


#define DECLARE_ENUM(name, ...)                                         \
    enum name { __VA_ARGS__ };                                          \
    template <>                                                         \
    class EnumReflect<##name>: public EnumReflectBase<##name> {         \
    public:                                                             \
        static const char* getEnums() { return #__VA_ARGS__; }          \
    };




/*
    Basic usage:

    Declare enumeration:

DECLARE_ENUM( enumName,

    enumValue1,
    enumValue2,
    enumValue3 = 5,

    // comment
    enumValue4
);

    Conversion logic:

    From enumeration to string:

        printf( EnumToString(enumValue3).c_str() );

    From string to enumeration:

       enumName value;

       if( !StringToEnum("enumValue4", value) )
            printf("Conversion failed...");
*/

//
//  Converts enumeration to string, if not found - empty string is returned.
//
template <class T>
std::string EnumToString(T t)
{
    EnumReflect<T>::EnsureEnumMapReady(EnumReflect<T>::getEnums());
    auto& int2enum = EnumReflect<T>::int2enum;
    auto it = int2enum.find(t);

    if (it == int2enum.end())
        return "";

    return it->second;
}

//
//  Converts string to enumeration, if not found - false is returned.
//
template <class T>
bool StringToEnum(const char* enumName, T& t)
{
    EnumReflect<T>::EnsureEnumMapReady(EnumReflect<T>::getEnums());
    auto& enum2int = EnumReflect<T>::enum2int;
    auto it = enum2int.find(enumName);

    if (it == enum2int.end())
        return false;

    t = (T) it->second;
    return true;
}

这是示例测试应用程序:

DECLARE_ENUM(TestEnum,
    ValueOne,
    ValueTwo,
    ValueThree = 5,
    ValueFour = 7
);

DECLARE_ENUM(TestEnum2,
    ValueOne2 = -1,
    ValueTwo2,
    ValueThree2 = -4,
    ValueFour2
);

void main(void)
{
    string sName1 = EnumToString(ValueOne);
    string sName2 = EnumToString(ValueTwo);
    string sName3 = EnumToString(ValueThree);
    string sName4 = EnumToString(ValueFour);

    TestEnum t1, t2, t3, t4, t5 = ValueOne;
    bool b1 = StringToEnum(sName1.c_str(), t1);
    bool b2 = StringToEnum(sName2.c_str(), t2);
    bool b3 = StringToEnum(sName3.c_str(), t3);
    bool b4 = StringToEnum(sName4.c_str(), t4);
    bool b5 = StringToEnum("Unknown", t5);

    string sName2_1 = EnumToString(ValueOne2);
    string sName2_2 = EnumToString(ValueTwo2);
    string sName2_3 = EnumToString(ValueThree2);
    string sName2_4 = EnumToString(ValueFour2);

    TestEnum2 t2_1, t2_2, t2_3, t2_4, t2_5 = ValueOne2;
    bool b2_1 = StringToEnum(sName2_1.c_str(), t2_1);
    bool b2_2 = StringToEnum(sName2_2.c_str(), t2_2);
    bool b2_3 = StringToEnum(sName2_3.c_str(), t2_3);
    bool b2_4 = StringToEnum(sName2_4.c_str(), t2_4);
    bool b2_5 = StringToEnum("Unknown", t2_5);

同一头文件的更新版本将保存在这里:

https://github.com/tapika/cppscriptcore/blob/master/SolutionProjectModel/EnumReflect.h

Magic Enum header-only 库为 C++17 的枚举(到字符串、从字符串、迭代)提供静态反射。

#include <magic_enum.hpp>

enum Color { RED = 2, BLUE = 4, GREEN = 8 };

Color color = Color::RED;
auto color_name = magic_enum::enum_name(color);
// color_name -> "RED"

std::string color_name{"GREEN"};
auto color = magic_enum::enum_cast<Color>(color_name)
if (color.has_value()) {
  // color.value() -> Color::GREEN
};

有关更多示例,请查看主存储库 https://github.com/Neargye/magic_enum

缺点在哪里?

此库使用 compiler-specific hack(基于 __PRETTY_FUNCTION__ / __FUNCSIG__),适用于 Clang >= 5、MSVC >= 15.3 和 GCC >= 9。

枚举值必须在 [MAGIC_ENUM_RANGE_MIN, MAGIC_ENUM_RANGE_MAX].

范围内
  • 默认MAGIC_ENUM_RANGE_MIN = -128,MAGIC_ENUM_RANGE_MAX = 128.

  • 如果默认情况下所有枚举类型需要另一个范围,请重新定义宏 MAGIC_ENUM_RANGE_MINMAGIC_ENUM_RANGE_MAX.

  • MAGIC_ENUM_RANGE_MIN 必须小于或等于 0 并且必须大于 INT16_MIN.

  • MAGIC_ENUM_RANGE_MAX 必须大于 0 且必须小于 INT16_MAX.

  • 如果特定枚举类型需要另一个范围,请为必要的枚举类型添加特化 enum_range。

    #include <magic_enum.hpp>
    
    enum number { one = 100, two = 200, three = 300 };
    
    namespace magic_enum {
    template <>
      struct enum_range<number> {
        static constexpr int min = 100;
        static constexpr int max = 300;
    };
    }
    

我的 3 美分,尽管这并不完全符合 op 的要求。这里是相关的 reference.

namespace enums
{

template <typename T, T I, char ...Chars>
struct enums : std::integral_constant<T, I>
{
  static constexpr char const chars[sizeof...(Chars)]{Chars...};
};

template <typename T, T X, typename S, std::size_t ...I>
constexpr auto make(std::index_sequence<I...>) noexcept
{
  return enums<T, X, S().chars[I]...>();
}

#define ENUM(s, n) []() noexcept{\
  struct S { char const (&chars)[sizeof(s)]{s}; };\
  return enums::make<decltype(n), n, S>(\
    std::make_index_sequence<sizeof(s)>());}()

#define ENUM_T(s, n)\
  static constexpr auto s ## _tmp{ENUM(#s, n)};\
  using s ## _enum_t = decltype(s ## _tmp)

template <typename T, typename ...A, std::size_t N>
inline auto map(char const (&s)[N]) noexcept
{
  constexpr auto invalid(~T{});

  auto r{invalid};

  return
    (
      (
        invalid == r ?
          r = std::strncmp(A::chars, s, N) ? invalid : A{} :
          r
      ),
      ...
    );
}

}

int main()
{
  ENUM_T(echo, 0);
  ENUM_T(cat, 1);
  ENUM_T(ls, 2);

  std::cout << echo_enum_t{} << " " << echo_enum_t::chars << std::endl;

  std::cout << enums::map<int, echo_enum_t, cat_enum_t, ls_enum_t>("ls")) << std::endl;

  return 0;
}

因此您生成了一个类型,您可以将其转换为整数 and/or 字符串。

我的解决方案,使用预处理器定义。

您可以在 https://repl.it/@JomaCorpFX/nameof#main.cpp

上查看此代码
#include <iostream>
#include <stdexcept>
#include <regex>

typedef std::string String;
using namespace std::literals::string_literals;

class Strings
{
public:
    static String TrimStart(const std::string& data)
    {
        String s = data;
        s.erase(s.begin(), std::find_if(s.begin(), s.end(), [](unsigned char ch) {
            return !std::isspace(ch);
        }));
        return s;
    }

    static String TrimEnd(const std::string& data)
    {
        String s = data;
        s.erase(std::find_if(s.rbegin(), s.rend(), [](unsigned char ch) {
            return !std::isspace(ch);
        }).base(),
            s.end());
        return s;
    }

    static String Trim(const std::string& data)
    {
        return TrimEnd(TrimStart(data));
    }

    static String Replace(const String& data, const String& toFind, const String& toReplace)
    {
        String result = data;
        size_t pos = 0;
        while ((pos = result.find(toFind, pos)) != String::npos)
        {
            result.replace(pos, toFind.length(), toReplace);
            pos += toReplace.length();
            pos = result.find(toFind, pos);
        }
        return result;
    }

};

static String Nameof(const String& name)
{
    std::smatch groups;
    String str = Strings::Trim(name);
    if (std::regex_match(str, groups, std::regex(u8R"(^&?([_a-zA-Z]\w*(->|\.|::))*([_a-zA-Z]\w*)$)")))
    {
        if (groups.size() == 4)
        {
            return groups[3];
        }
    }
    throw std::invalid_argument(Strings::Replace(u8R"(nameof(#). Invalid identifier "#".)", u8"#", name));
}

#define nameof(name) Nameof(u8## #name ## s)
#define cnameof(name) Nameof(u8## #name ## s).c_str()

enum TokenType {
    COMMA,
    PERIOD,
    Q_MARK
};

struct MyClass
{
    enum class MyEnum : char {
        AAA = -8,
        BBB = '8',
        CCC = AAA + BBB
    };
};

int main() {
    String greetings = u8"Hello"s;
    std::cout << nameof(COMMA) << std::endl;
    std::cout << nameof(TokenType::PERIOD) << std::endl;
    std::cout << nameof(TokenType::Q_MARK) << std::endl;
    std::cout << nameof(int) << std::endl;
    std::cout << nameof(std::string) << std::endl;
    std::cout << nameof(Strings) << std::endl;
    std::cout << nameof(String) << std::endl;
    std::cout << nameof(greetings) << std::endl;
    std::cout << nameof(&greetings) << std::endl;
    std::cout << nameof(greetings.c_str) << std::endl;
    std::cout << nameof(std::string::npos) << std::endl;
    std::cout << nameof(MyClass::MyEnum::AAA) << std::endl;
    std::cout << nameof(MyClass::MyEnum::BBB) << std::endl;
    std::cout << nameof(MyClass::MyEnum::CCC) << std::endl;


    std::cin.get();
    return 0;
}

输出

COMMA
PERIOD
Q_MARK
int
string
Strings
String
greetings
greetings
c_str
npos
AAA
BBB
CCC

铿锵

Visual C++

您可以滥用user-defined literals来达到想要的结果:

enum
{
  AAA = "AAA"_h8,
  BB = "BB"_h8,
};
   
std::cout << h8::to_string(AAA) << std::endl;
std::cout << h8::to_string(BB) << std::endl;

这将一个字符串打包成一个整数,这是可逆的。查看示例 here.

我对与此一起提出的所有花哨的框架(宏和模板以及 类)不是很满意,因为我认为使用它们会使代码更难理解,并且可以增加编译时间并隐藏错误。一般来说,我想要一个简单的解决方案来解决这个问题。多加100行代码可不简单

原问题中给出的示例与我在生产中实际使用的代码非常接近。相反,我只想对原始示例查找函数提出一些小改进:

const std::string& magic(MyClass::MyEnum e)
{
    static const std::string OUT_OF_RANGE = "Out of range";
    #define ENTRY(v) { MyClass::MyEnum::v, "MyClass::MyEnum::" #v }
    static const std::unordered_map<MyClass::MyEnum, std::string> LOOKUP {
        ENTRY(AAA),
        ENTRY(BBB),
        ENTRY(CCC),
    };
    #undef ENTRY
    auto it  = LOOKUP.find(e);
    return ((it != LOOKUP.end()) ? it->second : OUT_OF_RANGE);
}

具体来说:

  1. 内部数据结构现在是 'static' 和 'const'。这些都是 不变,因此无需在每次调用时构造这些 的功能,这样做会非常低效。相反,这些是 仅在第一次调用该函数时构造。
  2. Return 值现在是 'const std::string&'。这个 函数将仅 return 引用已分配的 std::string 个生命周期为 'static' 的对象,所以没有必要 在 returning.
  3. 时复制它们
  4. 地图类型现在是 'std::unordered_map' 用于 O(1) 访问而不是 std::map 的 O(log(N)) 访问。
  5. 使用 ENTRY 宏可以使代码更简洁,也可以避免潜在的 在字符串文字中输入名称时出现的拼写错误问题。 (如果 程序员输入了一个无效的名称,将导致编译器错误。)

你可以使用一个select()函数,它实际上只是一个简写开关;它不是真正意义上的解决方案,但它让生活更轻松:

enum
{
  NORMAL,
  INVALID
} state(NORMAL);

//std::cout << (state ? "INVALID" : "NORMAL") << std::endl;
std::cout << select(state, "NORMAL", "INVALID") << std::endl;

select() 函数在 SIMD/GPU 编程中很常见。它们是三元 ?: 运算符的概括。您还可以将 select() 视为函数数组(实现数组数据结构的函数)。

这是完整的 example