通过使用 R 匹配 df1 和 df2 中的列中的模式来更新 df2 中的列

Update a column in df2 by matching patterns in columns in df1 & df2 using R

我有 2 个这样的数据框

TEAM <- c("PE","PE","MPI","TDT","HPT","ATD")
CODE <- c(NA,"F","A","H","G","D")
df1 <- data.frame(TEAM,CODE)

CODE <- c(NA,"F100","A234","D664","H435","G123","A666","D345","G324",NA)
TEAM <- c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA)
df2 <- data.frame(CODE,TEAM)

我正在尝试通过将 df1 中的代码列中的第一个字母与 df2 中的代码列相匹配来更新 df2 中的 TEAM

我想要的 df2 输出

   CODE TEAM
1    NA   PE
2  F100   PE
3  A234  MPI
4  D664  ATD
5  H435  TDT
6  G123  HPT
7  A666  MPI
8  D345  ATD
9  G324  HPT
10   NA   PE

我正在用 sqldf 尝试这种方式,但它不正确

library(sqldf)
df2 <- sqldf(c("update df2 set TEAM = 
                  case
                    when CODE like '%F%' then 'PE'
                    when CODE like '%A%' then 'MPI'
                    when CODE like '%D%' then 'ATD'
                    when CODE like '%G%' then 'HPT'
                    when CODE like '%H%' then 'TDT'
                    else 'NA'
                  end"))

有人可以帮我提供一些在没有 sqldf 的情况下实现这一目标的指导吗?

使用 matchsubstr(均在 base R 中):

df2$TEAM = df1$TEAM[match(substr(df2$CODE, 1, 1), df1$CODE)]

df2
#    CODE TEAM
# 1  <NA>   PE
# 2  F100   PE
# 3  A234  MPI
# 4  D664  ATD
# 5  H435  TDT
# 6  G123  HPT
# 7  A666  MPI
# 8  D345  ATD
# 9  G324  HPT
# 10 <NA>   PE

这对于单个案例来说是权宜之计 - 如果您经常这样做,我鼓励您将代码的第一个字母提取到它自己的列中,CODE_1,然后定期执行merge 或加入。

假设您正在寻找 sqldf 解决方案,试试这个:

sqldf("select CODE, 
              case
                 when CODE like 'F%' then 'PE'
                 when CODE like 'A%' then 'MPI'
                 when CODE like 'D%' then 'ATD'
                 when CODE like 'G%' then 'HPT'
                 when CODE like 'H%' then 'TDT'
                 else 'PE'
              end TEAM from df2", method = "raw")

或者这个:

sqldf("select df2.CODE, coalesce(df1.TEAM, 'PE') TEAM 
       from df2 
       left join df1 on substr(df2.CODE, 1, 1) = df1.CODE")