readr - 如何从 spec() 更新 col_spec 对象

readr - how to update col_spec object from spec()

我喜欢 this RStudio blog post 中描述的有关色谱柱规格的工作流程。基本上,可以在 read_csv 导入后获取列规范,然后将其保存下来以备后用。例如,从 post:

mtcars2 <- read_csv(readr_example("mtcars.csv"))
#> Parsed with column specification:
#> cols(
#>   mpg = col_double(),
#>   cyl = col_integer(),
#>   disp = col_double(),
#>   hp = col_integer(),
#>   drat = col_double(),
#>   wt = col_double(),
#>   qsec = col_double(),
#>   vs = col_integer(),
#>   am = col_integer(),
#>   gear = col_integer(),
#>   carb = col_integer()
#> )
# Once you've figured out the correct types
mtcars_spec <- write_rds(spec(mtcars2), "mtcars2-spec.rds")

# Every subsequent load
mtcars2 <- read_csv(
  readr_example("mtcars.csv"), 
  col_types = read_rds("mtcars2-spec.rds")
)

不幸的是,规范对象本身是带有属性的列表,但它们与通过 col_types 参数

提供给 read_csv 函数的不同列规范不匹配
> mtcars_spec$cols$cyl
<collector_integer>
> str(mtcars_spec$cols$cyl)
 list()
 - attr(*, "class")= chr [1:2] "collector_integer" "collector"
> class(mtcars_spec)
[1] "col_spec"

此外,在 Windows 中编辑 .rds 文件很难看(至少对我而言)。

我希望能够编辑大型 col_spec 对象(例如,跳过某些列,或者以其他方式编辑 class)。我可以继续猜测编辑列表所需的字符串,如下所示:

attr(mtcars_spec$cols$cyl,"class")[1] = "collector_skip"` # this worked!
> mtcars_spec
cols(
  mpg = col_double(),
  cyl = col_skip(),
  disp = col_double(),
  hp = col_integer(),
  drat = col_double(),
  wt = col_double(),
  qsec = col_double(),
  vs = col_integer(),
  am = col_integer(),
  gear = col_integer(),
  carb = col_integer()
)

但这似乎很尴尬。是否有更优雅的方法来更新列 classifications,例如,如我的示例所示,尝试跳过 mtcars$cyl 列?或者,如果不是一种优雅的方式,一种涵盖所有可能类型的方式?我不想对如何使用各种日期格式实现 <collector_date> 进行大量猜测。

这是Jim Hester's Github post

的最小版本
library(readr)
test_spec <- spec_csv('x,y,theDate,skipCol
  1,a,"21/01/2018", "skip1
  2,z,"31/01/2018", "skip2')

test_spec
#> cols(
#>   x = col_integer(),
#>   y = col_character(),
#>   theDate = col_character(),
#>   skipCol = col_character()
#> )

test_spec$cols[["theDate"]] <- col_date("%d/%m/%Y")
test_spec$cols[["skipCol"]] <- col_skip()

test_spec
#> cols(
#>   x = col_integer(),
#>   y = col_character(),
#>   theDate = col_date(format = "%d/%m/%Y"),
#>   skipCol = col_skip()
#> )

备注

  • 您需要了解数据的日期格式。
  • 您可以对文件使用 readr::spec_csv()