在 R Shiny 中,如何通过 selectInput 将旧选项卡替换为新选项卡
In Rshiny, How to replace old tabs with new one by selectInpout
这是一个现有的例子
library(shiny)
runExample("06_tabsets")
您会看到您可以在单选按钮中选择分发类型,并且有三个选项卡 "Plot"、"Summary" 和 "Table"。
我的问题是如何在 sliderInput(观察数)下添加一个具有两个值的 selectInput。默认一个是"NULL",第二个是“1”。一旦用户 select “1”,之前的三个标签就会消失。相反,一个新标签会显示它的内容。
这是修改后的“06_tabsets”。添加 select 输入并根据 select 离子生成 UI。唯一的区别是不是使用NULL,而是两个选项。我可以用 NULL 使它成为 运行。让我知道这是否有帮助。
ui.R
library(shiny)
# Define UI for random distribution application
shinyUI(fluidPage(
# Application title
titlePanel("Tabsets"),
# Sidebar with controls to select the random distribution type
# and number of observations to generate. Note the use of the
# br() element to introduce extra vertical spacing
sidebarLayout(
sidebarPanel(
radioButtons("dist", "Distribution type:",
c("Normal" = "norm",
"Uniform" = "unif",
"Log-normal" = "lnorm",
"Exponential" = "exp")),
br(),
sliderInput("n",
"Number of observations:",
value = 500,
min = 1,
max = 1000),
selectInput("contentSelect", "Select content to dislay:", choices = c("1", "2"), selected = 1)
),
# Show a tabset that includes a plot, summary, and table view
# of the generated distribution
mainPanel(
uiOutput("content")
)
)
))
server.R
library(shiny)
# Define server logic for random distribution application
shinyServer(function(input, output) {
# Reactive expression to generate the requested distribution.
# This is called whenever the inputs change. The output
# functions defined below then all use the value computed from
# this expression
data <- reactive({
dist <- switch(input$dist,
norm = rnorm,
unif = runif,
lnorm = rlnorm,
exp = rexp,
rnorm)
dist(input$n)
})
# Generate a plot of the data. Also uses the inputs to build
# the plot label. Note that the dependencies on both the inputs
# and the data reactive expression are both tracked, and
# all expressions are called in the sequence implied by the
# dependency graph
output$plot <- renderPlot({
dist <- input$dist
n <- input$n
hist(data(),
main=paste('r', dist, '(', n, ')', sep=''))
})
# Generate a summary of the data
output$summary <- renderPrint({
summary(data())
})
# Generate an HTML table view of the data
output$table <- renderTable({
data.frame(x=data())
})
output$textA <- renderText({
paste(input$contentSelect, " A")
})
observeEvent(input$contentSelect, {
if (input$contentSelect == "1") {
output$content <- renderUI({
tabsetPanel(type = "tabs",
tabPanel("Plot", plotOutput("plot")),
tabPanel("Summary", verbatimTextOutput("summary")),
tabPanel("Table", tableOutput("table"))
)
})
} else {
output$content <- renderUI({
tabsetPanel(type = "tabs",
tabPanel("A", textOutput("textA"))
)
})
}
})
})
这是一个现有的例子
library(shiny)
runExample("06_tabsets")
您会看到您可以在单选按钮中选择分发类型,并且有三个选项卡 "Plot"、"Summary" 和 "Table"。
我的问题是如何在 sliderInput(观察数)下添加一个具有两个值的 selectInput。默认一个是"NULL",第二个是“1”。一旦用户 select “1”,之前的三个标签就会消失。相反,一个新标签会显示它的内容。
这是修改后的“06_tabsets”。添加 select 输入并根据 select 离子生成 UI。唯一的区别是不是使用NULL,而是两个选项。我可以用 NULL 使它成为 运行。让我知道这是否有帮助。
ui.R
library(shiny)
# Define UI for random distribution application
shinyUI(fluidPage(
# Application title
titlePanel("Tabsets"),
# Sidebar with controls to select the random distribution type
# and number of observations to generate. Note the use of the
# br() element to introduce extra vertical spacing
sidebarLayout(
sidebarPanel(
radioButtons("dist", "Distribution type:",
c("Normal" = "norm",
"Uniform" = "unif",
"Log-normal" = "lnorm",
"Exponential" = "exp")),
br(),
sliderInput("n",
"Number of observations:",
value = 500,
min = 1,
max = 1000),
selectInput("contentSelect", "Select content to dislay:", choices = c("1", "2"), selected = 1)
),
# Show a tabset that includes a plot, summary, and table view
# of the generated distribution
mainPanel(
uiOutput("content")
)
)
))
server.R
library(shiny)
# Define server logic for random distribution application
shinyServer(function(input, output) {
# Reactive expression to generate the requested distribution.
# This is called whenever the inputs change. The output
# functions defined below then all use the value computed from
# this expression
data <- reactive({
dist <- switch(input$dist,
norm = rnorm,
unif = runif,
lnorm = rlnorm,
exp = rexp,
rnorm)
dist(input$n)
})
# Generate a plot of the data. Also uses the inputs to build
# the plot label. Note that the dependencies on both the inputs
# and the data reactive expression are both tracked, and
# all expressions are called in the sequence implied by the
# dependency graph
output$plot <- renderPlot({
dist <- input$dist
n <- input$n
hist(data(),
main=paste('r', dist, '(', n, ')', sep=''))
})
# Generate a summary of the data
output$summary <- renderPrint({
summary(data())
})
# Generate an HTML table view of the data
output$table <- renderTable({
data.frame(x=data())
})
output$textA <- renderText({
paste(input$contentSelect, " A")
})
observeEvent(input$contentSelect, {
if (input$contentSelect == "1") {
output$content <- renderUI({
tabsetPanel(type = "tabs",
tabPanel("Plot", plotOutput("plot")),
tabPanel("Summary", verbatimTextOutput("summary")),
tabPanel("Table", tableOutput("table"))
)
})
} else {
output$content <- renderUI({
tabsetPanel(type = "tabs",
tabPanel("A", textOutput("textA"))
)
})
}
})
})