在 Spark 数据帧中分解嵌套结构
Exploding nested Struct in Spark dataframe
我正在研究 Databricks 示例。数据框的架构如下所示:
> parquetDF.printSchema
root
|-- department: struct (nullable = true)
| |-- id: string (nullable = true)
| |-- name: string (nullable = true)
|-- employees: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- firstName: string (nullable = true)
| | |-- lastName: string (nullable = true)
| | |-- email: string (nullable = true)
| | |-- salary: integer (nullable = true)
在示例中,他们展示了如何将 employees 列分解为 4 个额外的列:
val explodeDF = parquetDF.explode($"employees") {
case Row(employee: Seq[Row]) => employee.map{ employee =>
val firstName = employee(0).asInstanceOf[String]
val lastName = employee(1).asInstanceOf[String]
val email = employee(2).asInstanceOf[String]
val salary = employee(3).asInstanceOf[Int]
Employee(firstName, lastName, email, salary)
}
}.cache()
display(explodeDF)
我如何对部门列做类似的事情(即向数据框添加两个额外的列,称为“id”和“name”)?这些方法并不完全相同,我只能弄清楚如何使用以下方法创建全新的数据框:
val explodeDF = parquetDF.select("department.id","department.name")
display(explodeDF)
如果我尝试:
val explodeDF = parquetDF.explode($"department") {
case Row(dept: Seq[String]) => dept.map{dept =>
val id = dept(0)
val name = dept(1)
}
}.cache()
display(explodeDF)
我收到警告和错误:
<console>:38: warning: non-variable type argument String in type pattern Seq[String] is unchecked since it is eliminated by erasure
case Row(dept: Seq[String]) => dept.map{dept =>
^
<console>:37: error: inferred type arguments [Unit] do not conform to method explode's type parameter bounds [A <: Product]
val explodeDF = parquetDF.explode($"department") {
^
你可以使用类似的东西:
var explodeDF = explodeDF.withColumn("id", explodeDF("department.id"))
explodeDeptDF = explodeDeptDF.withColumn("name", explodeDeptDF("department.name"))
你帮我解决了哪些问题以及这些问题:
这似乎可行(尽管可能不是最优雅的解决方案)。
var explodeDF2 = explodeDF.withColumn("id", explodeDF("department.id"))
explodeDF2 = explodeDF2.withColumn("name", explodeDF2("department.name"))
在我看来,最优雅的解决方案是使用 select 运算符对 Struct 进行星形扩展,如下所示:
var explodedDf2 = explodedDf.select("department.*","*")
https://docs.databricks.com/spark/latest/spark-sql/complex-types.html
我正在研究 Databricks 示例。数据框的架构如下所示:
> parquetDF.printSchema
root
|-- department: struct (nullable = true)
| |-- id: string (nullable = true)
| |-- name: string (nullable = true)
|-- employees: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- firstName: string (nullable = true)
| | |-- lastName: string (nullable = true)
| | |-- email: string (nullable = true)
| | |-- salary: integer (nullable = true)
在示例中,他们展示了如何将 employees 列分解为 4 个额外的列:
val explodeDF = parquetDF.explode($"employees") {
case Row(employee: Seq[Row]) => employee.map{ employee =>
val firstName = employee(0).asInstanceOf[String]
val lastName = employee(1).asInstanceOf[String]
val email = employee(2).asInstanceOf[String]
val salary = employee(3).asInstanceOf[Int]
Employee(firstName, lastName, email, salary)
}
}.cache()
display(explodeDF)
我如何对部门列做类似的事情(即向数据框添加两个额外的列,称为“id”和“name”)?这些方法并不完全相同,我只能弄清楚如何使用以下方法创建全新的数据框:
val explodeDF = parquetDF.select("department.id","department.name")
display(explodeDF)
如果我尝试:
val explodeDF = parquetDF.explode($"department") {
case Row(dept: Seq[String]) => dept.map{dept =>
val id = dept(0)
val name = dept(1)
}
}.cache()
display(explodeDF)
我收到警告和错误:
<console>:38: warning: non-variable type argument String in type pattern Seq[String] is unchecked since it is eliminated by erasure
case Row(dept: Seq[String]) => dept.map{dept =>
^
<console>:37: error: inferred type arguments [Unit] do not conform to method explode's type parameter bounds [A <: Product]
val explodeDF = parquetDF.explode($"department") {
^
你可以使用类似的东西:
var explodeDF = explodeDF.withColumn("id", explodeDF("department.id"))
explodeDeptDF = explodeDeptDF.withColumn("name", explodeDeptDF("department.name"))
你帮我解决了哪些问题以及这些问题:
这似乎可行(尽管可能不是最优雅的解决方案)。
var explodeDF2 = explodeDF.withColumn("id", explodeDF("department.id"))
explodeDF2 = explodeDF2.withColumn("name", explodeDF2("department.name"))
在我看来,最优雅的解决方案是使用 select 运算符对 Struct 进行星形扩展,如下所示:
var explodedDf2 = explodedDf.select("department.*","*")
https://docs.databricks.com/spark/latest/spark-sql/complex-types.html