如何在 ubuntu 上裁剪 opencv 和 dlib 上的图像
How to crop the image on opencv and dlib on ubuntu
我想在 ubuntu 上使用 c++ 在 opencv 和 dlib 上执行这些操作。
- 使用dlib检测人脸。(我已经做到了。)
- 只裁剪嘴部周围的图像。
这是我的代码。它基于 dlib 示例代码。
#include <dlib/image_processing/frontal_face_detector.h>
#include <dlib/image_processing/render_face_detections.h>
#include <dlib/image_processing.h>
#include <dlib/gui_widgets.h>
#include <dlib/image_io.h>
#include <iostream>
#include <opencv2/opencv.hpp>
#include <highgui.h>
using namespace dlib;
using namespace std;
// ----------------------------------------------------------------------------------------
int main(int argc, char** argv)
{
try
{
// This example takes in a shape model file and then a list of images to
// process. We will take these filenames in as command line arguments.
// Dlib comes with example images in the examples/faces folder so give
// those as arguments to this program.
if (argc == 1)
{
cout << "Call this program like this:" << endl;
cout << "./face_landmark_detection_ex shape_predictor_68_face_landmarks.dat faces/*.jpg" << endl;
cout << "\nYou can get the shape_predictor_68_face_landmarks.dat file from:\n";
cout << "http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2" << endl;
return 0;
}
// We need a face detector. We will use this to get bounding boxes for
// each face in an image.
frontal_face_detector detector = get_frontal_face_detector();
// And we also need a shape_predictor. This is the tool that will predict face
// landmark positions given an image and face bounding box. Here we are just
// loading the model from the shape_predictor_68_face_landmarks.dat file you gave
// as a command line argument.
shape_predictor sp;
deserialize(argv[1]) >> sp;
cv::Mat cimg = cv::imread(argv[1]);
image_window win, win_faces;
// Loop over all the images provided on the command line.
for (int i = 2; i < argc; ++i)
{
cout << "processing image " << argv[i] << endl;
array2d<rgb_pixel> img;
load_image(img, argv[i]);
/*
// Make the image larger so we can detect small faces.
pyramid_up(img);
*/
// Now tell the face detector to give us a list of bounding boxes
// around all the faces in the image.
std::vector<rectangle> dets = detector(img);
cout << "Number of faces detected: " << dets.size() << endl;
// Now we will go ask the shape_predictor to tell us the pose of
// each face we detected.
std::vector<full_object_detection> shapes;
for (unsigned long j = 0; j < dets.size(); ++j)
{
full_object_detection shape = sp(img, dets[j]);
cout << "number of parts: "<< shape.num_parts() << endl;
cout << "pixel position of first part: " << shape.part(0) << endl;
cout << "pixel position of second part: " << shape.part(1) << endl;
// You get the idea, you can get all the face part locations if
// you want them. Here we just store them in shapes so we can
// put them on the screen.
shapes.push_back(shape);
}
// Crop the original image to the defined ROI */
cv::Rect roi;
roi.x = 0;
roi.y = 0;
roi.width = 200;
roi.height = 200;
cv::Mat crop = cimg(roi);
cv::imshow("crop", crop);
// Now let's view our face poses on the screen.
/*
win.clear_overlay();
win.set_image(img);
win.add_overlay(render_face_detections(shapes));
// We can also extract copies of each face that are cropped, rotated upright,
// and scaled to a standard size as shown here:
//dlib::array<array2d<rgb_pixel> > face_chips;
//extract_image_chips(img, get_face_chip_details(shapes), face_chips);
//win_faces.set_image(tile_images(face_chips));
*/
cout << "Hit enter to process the next image..." << endl;
cin.get();
}
}
catch (exception& e)
{
cout << "\nexception thrown!" << endl;
cout << e.what() << endl;
}
}
但它给了我这个错误。
OpenCV Error: Assertion failed (0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows) in Mat, file /home/bigadmin/opencv-3.1.0/modules/core/src/matrix.cpp, line 508
exception thrown!
/home/bigadmin/opencv-3.1.0/modules/core/src/matrix.cpp:508: error: (-215) 0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows in function Mat
请教我解决这个问题的方法。
谢谢。
您的代码中有很多错误:
- cv::Mat cimg = cv::imread(argv[1]); - argv[1] 是检测器文件,而不是图像 - 你会得到空图像,这就是你的程序崩溃的原因
您没有遍历图像。尝试这样的事情:
for (int i = 2; i < argc; ++i)
{
cout << "processing image " << argv[i] << endl;
cv::Mat cvimg = cv::imgread(argv[i]);
dlib::cv_image<rgb_pixel> img(cvimg);
...
在这里你将只读取一次文件并且能够检测人脸
你应该根据面部检测器功能指定裁剪区域(甚至更好 - 基于形状预测器)
...
std::vector<rectangle> dets = detector(img);
这里dets中的每一项都是一个矩形,描述人脸,你可以这样裁剪:
dlib::rectangle r = dets[j];
cv::Rect roi(r.left(), r.top(), r.width(), r.height());
cv::Mat face = cvimg(roi);
但它将是全脸图像。如果你只想裁剪嘴巴,你应该使用形状预测器的输出(没有测试 - 请检查编译是否正确):
full_object_detection shape = sp(img, dets[j]);
auto mouth_left = shape.part(45);
auto mouth_right = shape.part(54);
unsigned long mouth_width = (mouth_right - mouth_left).length();
double padding = 0.2;
cv::Rect roi(mouth_left.x() - mouth_width * padding, mouth_left.y() - mouth_width*0.5, mouth_width * (1 + padding * 2), mouth_width);
cv::Mat mouth = cvimg(roi);
这将产生未对齐的嘴部图像
我想在 ubuntu 上使用 c++ 在 opencv 和 dlib 上执行这些操作。
- 使用dlib检测人脸。(我已经做到了。)
- 只裁剪嘴部周围的图像。
这是我的代码。它基于 dlib 示例代码。
#include <dlib/image_processing/frontal_face_detector.h>
#include <dlib/image_processing/render_face_detections.h>
#include <dlib/image_processing.h>
#include <dlib/gui_widgets.h>
#include <dlib/image_io.h>
#include <iostream>
#include <opencv2/opencv.hpp>
#include <highgui.h>
using namespace dlib;
using namespace std;
// ----------------------------------------------------------------------------------------
int main(int argc, char** argv)
{
try
{
// This example takes in a shape model file and then a list of images to
// process. We will take these filenames in as command line arguments.
// Dlib comes with example images in the examples/faces folder so give
// those as arguments to this program.
if (argc == 1)
{
cout << "Call this program like this:" << endl;
cout << "./face_landmark_detection_ex shape_predictor_68_face_landmarks.dat faces/*.jpg" << endl;
cout << "\nYou can get the shape_predictor_68_face_landmarks.dat file from:\n";
cout << "http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2" << endl;
return 0;
}
// We need a face detector. We will use this to get bounding boxes for
// each face in an image.
frontal_face_detector detector = get_frontal_face_detector();
// And we also need a shape_predictor. This is the tool that will predict face
// landmark positions given an image and face bounding box. Here we are just
// loading the model from the shape_predictor_68_face_landmarks.dat file you gave
// as a command line argument.
shape_predictor sp;
deserialize(argv[1]) >> sp;
cv::Mat cimg = cv::imread(argv[1]);
image_window win, win_faces;
// Loop over all the images provided on the command line.
for (int i = 2; i < argc; ++i)
{
cout << "processing image " << argv[i] << endl;
array2d<rgb_pixel> img;
load_image(img, argv[i]);
/*
// Make the image larger so we can detect small faces.
pyramid_up(img);
*/
// Now tell the face detector to give us a list of bounding boxes
// around all the faces in the image.
std::vector<rectangle> dets = detector(img);
cout << "Number of faces detected: " << dets.size() << endl;
// Now we will go ask the shape_predictor to tell us the pose of
// each face we detected.
std::vector<full_object_detection> shapes;
for (unsigned long j = 0; j < dets.size(); ++j)
{
full_object_detection shape = sp(img, dets[j]);
cout << "number of parts: "<< shape.num_parts() << endl;
cout << "pixel position of first part: " << shape.part(0) << endl;
cout << "pixel position of second part: " << shape.part(1) << endl;
// You get the idea, you can get all the face part locations if
// you want them. Here we just store them in shapes so we can
// put them on the screen.
shapes.push_back(shape);
}
// Crop the original image to the defined ROI */
cv::Rect roi;
roi.x = 0;
roi.y = 0;
roi.width = 200;
roi.height = 200;
cv::Mat crop = cimg(roi);
cv::imshow("crop", crop);
// Now let's view our face poses on the screen.
/*
win.clear_overlay();
win.set_image(img);
win.add_overlay(render_face_detections(shapes));
// We can also extract copies of each face that are cropped, rotated upright,
// and scaled to a standard size as shown here:
//dlib::array<array2d<rgb_pixel> > face_chips;
//extract_image_chips(img, get_face_chip_details(shapes), face_chips);
//win_faces.set_image(tile_images(face_chips));
*/
cout << "Hit enter to process the next image..." << endl;
cin.get();
}
}
catch (exception& e)
{
cout << "\nexception thrown!" << endl;
cout << e.what() << endl;
}
}
但它给了我这个错误。
OpenCV Error: Assertion failed (0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows) in Mat, file /home/bigadmin/opencv-3.1.0/modules/core/src/matrix.cpp, line 508
exception thrown!
/home/bigadmin/opencv-3.1.0/modules/core/src/matrix.cpp:508: error: (-215) 0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows in function Mat
请教我解决这个问题的方法。
谢谢。
您的代码中有很多错误:
- cv::Mat cimg = cv::imread(argv[1]); - argv[1] 是检测器文件,而不是图像 - 你会得到空图像,这就是你的程序崩溃的原因
您没有遍历图像。尝试这样的事情:
for (int i = 2; i < argc; ++i) { cout << "processing image " << argv[i] << endl; cv::Mat cvimg = cv::imgread(argv[i]); dlib::cv_image<rgb_pixel> img(cvimg); ...
在这里你将只读取一次文件并且能够检测人脸
你应该根据面部检测器功能指定裁剪区域(甚至更好 - 基于形状预测器)
...
std::vector<rectangle> dets = detector(img);
这里dets中的每一项都是一个矩形,描述人脸,你可以这样裁剪:
dlib::rectangle r = dets[j];
cv::Rect roi(r.left(), r.top(), r.width(), r.height());
cv::Mat face = cvimg(roi);
但它将是全脸图像。如果你只想裁剪嘴巴,你应该使用形状预测器的输出(没有测试 - 请检查编译是否正确):
full_object_detection shape = sp(img, dets[j]);
auto mouth_left = shape.part(45);
auto mouth_right = shape.part(54);
unsigned long mouth_width = (mouth_right - mouth_left).length();
double padding = 0.2;
cv::Rect roi(mouth_left.x() - mouth_width * padding, mouth_left.y() - mouth_width*0.5, mouth_width * (1 + padding * 2), mouth_width);
cv::Mat mouth = cvimg(roi);
这将产生未对齐的嘴部图像