使用 matplotlib 求解多边形中的点

Using matplotlib to solve Point in Polygone

我正在寻找一种算法来检查一个点是否在多边形内。

我目前正在使用 mplPath 和 contains_point() 但它在某些情况下似乎不起作用。

编辑 2016 年 9 月 16 日:

好的,所以我通过简单地检查该点是否也在边缘来改进我的代码。我仍然对矩形和领结示例有一些问题:

新代码:

#for PIP problem
import matplotlib.path as mplPath
import numpy as np
#for plot
import matplotlib.pyplot as plt


def plot(poly,points):
    bbPath = mplPath.Path(poly)
    #plot polygon
    plt.plot(*zip(*poly))

    #plot points
    xs,ys,cs = [],[],[]
    for point in points:
        xs.append(point[0])
        ys.append(point[1])
        color = inPoly(poly,point)
        cs.append(color)
        print point,":", color
    plt.scatter(xs,ys, c = cs , s = 20*4*2)

    #setting limits
    axes = plt.gca()
    axes.set_xlim([min(xs)-5,max(xs)+50])
    axes.set_ylim([min(ys)-5,max(ys)+10])

    plt.show()

def isBetween(a, b, c): #is c between a and b ?
    crossproduct = (c[1] - a[1]) * (b[0] - a[0]) - (c[0] - a[0]) * (b[1] - a[1])
    if abs(crossproduct) > 0.01 : return False   # (or != 0 if using integers)

    dotproduct = (c[0] - a[0]) * (b[0] - a[0]) + (c[1] - a[1])*(b[1] - a[1])
    if dotproduct < 0 : return False

    squaredlengthba = (b[0] - a[0])*(b[0] - a[0]) + (b[1] - a[1])*(b[1] - a[1])
    if dotproduct > squaredlengthba: return False

    return True

def get_edges(poly):
    # get edges
    edges = []
    for i in range(len(poly)-1):
        t = [poly[i],poly[i+1]]
        edges.append(t)
    return edges

def inPoly(poly,point):
    if bbPath.contains_point(point) == True:
        return 1
    else:
        for e in get_edges(poly):
            if isBetween(e[0],e[1],point):
                return 1
    return 0
# TESTS ========================================================================
#set up poly
polys = {
1 : [[10,10],[10,50],[50,50],[50,80],[100,80],[100,10],[10,10]], # test rectangulary shape
2 : [[20,10],[10,20],[30,20],[20,10]], # test triangle
3 : [[0,0],[0,10],[20,0],[20,10],[0,0]], # test bow-tie
4 : [[0,0],[0,10],[20,10],[20,0],[0,0]] # test rect
}

#points to check
points = {
1 : [(10,25),(50,75),(60,10),(20,20),(20,60),(40,50)], # rectangulary shape test pts
2 : [[20,10],[10,20],[30,20],[-5,0],[20,15]] , # triangle  test pts
3 : [[0,0],[0,10],[20,0],[20,10],[10,0],[10,5],[15,5]],  # bow-tie shape test pts
4 : [[0,0],[0,10],[20,0],[20,10],[10,0],[10,5],[15,5]]  # rect shape test pts
}

#print bbPath.contains_points(points) #0 if outside, 1 if inside
for data in zip(polys.itervalues(),points.itervalues()):
    plot(data[0],data[1])

新代码的输出:

旧代码:

#for PIP problem
import matplotlib.path as mplPath
import numpy as np
#for plot
import matplotlib.pyplot as plt

#set up poly
array = np.array([[10,10],[10,50],[50,50],[50,80],[100,80],[100,10]])
bbPath = mplPath.Path(array)

#points to check
points = [(10,25),(50,75),(60,10),(20,20),(20,60),(40,50)]


print bbPath.contains_points(points) #0 if outside, 1 if inside

#plot polygon
plt.plot(*zip(*array))

#plot points
xs,ys,cs = [],[],[]
for point in points:
    xs.append(point[0])
    ys.append(point[1])
    cs.append(bbPath.contains_point(point))
plt.scatter(xs,ys, c = cs)

#setting limits
axes = plt.gca()
axes.set_xlim([0,120])
axes.set_ylim([0,100])

plt.show()

我想出了以下 。如您所见,红色包围的三个点被指示为在多边形(蓝色)之外,而我希望它们在多边形内部。

我也试过改变路径的半径值 bbPath.contains_points(points, radius = 1.) 但这没有任何区别。

欢迎任何帮助。

编辑:

这个问题的答案中提出的算法的屏幕截图似乎表明它在其他情况下失败了。

如果从长远来看还不错,您可能会偏离以下原则:如果交叉点的数量为奇数,则点在多边形内部,如果交叉点的数量为偶数,则类似地在多边形之外。这是我和你上面给出的测试用例放在一起的一些草率 python。

# polygon points: [[x,y],...]
points = [[10,10],[10,50],[50,50],[50,80],[100,80],[100,10]]


# get edges
edges = []
for i in range(len(points)-1):
    t = [points[i],points[i+1]]
    edges.append(t)

# get min and max x values to use as the length of ray
xmax = max(points,key=lambda item:item[1])[0]
xmin = min(points,key=lambda item:item[1])[1]
dist = xmax-xmin

# return True if p1,p2,p3 are on the same line
def colinear(p1,p2,p3):
      return (p1[0]*(p2[1] - p3[1]) + p2[0]*(p3[1] - p1[1]) + p3[0]*(p1[1] - p2[1])) == 0

# return True if p1 is on the line segment p2-p3
def inRange(p1,p2,p3):
    dx = abs(p3[0]-p2[0])
    dy = abs(p3[1]-p2[1])
    if abs(p3[0]-p1[0])+abs(p2[0]-p1[0])==dx and abs(p3[1]-p1[1])+abs(p2[1]-p1[1])==dy:
        return True
    return False


# line segment intersection between
# (x1,y1)-(x1+dist,y1) and 
# (x3,y3)-(x4,y4)
def intersect(x1,y1,x3,y3,x4,y4):
    x2 = x1+dist
    B1 = x1-x2
    C1 = B1*y1

    A2 = y4-y3
    B2 = x3-x4
    C2 = A2*x3+B2*y3
    det =-A2*B1
    if(det == 0):
        return False
    x = (B2*C1 - B1*C2)/det
    if inRange((x,y1),(x3,y3),(x4,y4)):
        return True
    return False

# return True if point (x,y) is inside
# polygon defined above
def isInside(x,y):
    i = 0
    for edge in edges:
        # if (x,y) is on the edge return True
        if colinear((x,y),edge[0],edge[1]) and inRange((x,y),edge[0],edge[1]):
            return True
        # if both x values of edge are to the left of (x,y)
        # if both y values of edge are are above or bellow (x,y)
        #    then skip
        if edge[0][0] < x and edge[1][0] < x:
            continue
        if edge[0][1] < y and edge[1][1] < y:
            continue
        # if ray intersects edge, increment i
        if intersect(x,y,edge[0][0],edge[0][1],edge[1][0],edge[1][1]):
            i+=1
    if i%2==1:
        return True
    else:
        return False


l = [(10,25),(50,75),(60,10),(20,20),(20,60),(40,50)]
for p in l:
    print(isInside(p[0],p[1]))

好吧,我终于设法改用 shapely 来完成它。

#for PIP problem
import matplotlib.path as mplPath
import numpy as np
#for plot
import matplotlib.pyplot as plt
import shapely.geometry as shapely

class MyPoly(shapely.Polygon):
    def __init__(self,points):
        super(MyPoly,self).__init__(points)
        self.points = points
        self.points_shapely = [shapely.Point(p[0],p[1]) for p in points]

def convert_to_shapely_points_and_poly(poly,points):
    poly_shapely = MyPoly(poly)
    points_shapely = [shapely.Point(p[0],p[1]) for p in points]
    return poly_shapely,points_shapely

def plot(poly_init,points_init):
    #convert to shapely poly and points
    poly,points = convert_to_shapely_points_and_poly(poly_init,points_init)

    #plot polygon
    plt.plot(*zip(*poly.points))

    #plot points
    xs,ys,cs = [],[],[]
    for point in points:
        xs.append(point.x)
        ys.append(point.y)
        color = inPoly(poly,point)
        cs.append(color)
        print point,":", color
    plt.scatter(xs,ys, c = cs , s = 20*4*2)

    #setting limits
    axes = plt.gca()
    axes.set_xlim([min(xs)-5,max(xs)+50])
    axes.set_ylim([min(ys)-5,max(ys)+10])

    plt.show()


def isBetween(a, b, c): #is c between a and b ?
    crossproduct = (c.y - a.y) * (b.x - a.x) - (c.x - a.x) * (b.y - a.y)
    if abs(crossproduct) > 0.01 : return False   # (or != 0 if using integers)

    dotproduct = (c.x - a.x) * (b.x - a.x) + (c.y - a.y)*(b.y - a.y)
    if dotproduct < 0 : return False

    squaredlengthba = (b.x - a.x)*(b.x - a.x) + (b.y - a.y)*(b.y - a.y)
    if dotproduct > squaredlengthba: return False

    return True

def get_edges(poly):
    # get edges
    edges = []
    for i in range(len(poly.points)-1):
        t = [poly.points_shapely[i],poly.points_shapely[i+1]]
        edges.append(t)
    return edges


def inPoly(poly,point):
    if poly.contains(point) == True:
        return 1
    else:
        for e in get_edges(poly):
            if isBetween(e[0],e[1],point):
                return 1
    return 0


# TESTS ========================================================================
#set up poly
polys = {
1 : [[10,10],[10,50],[50,50],[50,80],[100,80],[100,10],[10,10]], # test rectangulary shape
2 : [[20,10],[10,20],[30,20],[20,10]], # test triangle
3 : [[0,0],[0,10],[20,0],[20,10],[0,0]], # test bow-tie
4 : [[0,0],[0,10],[20,10],[20,0],[0,0]], # test rect clockwise
5 : [[0,0],[20,0],[20,10],[0,10],[0,0]] # test rect counter-clockwise
}

#points to check
points = {
1 : [(10,25),(50,75),(60,10),(20,20),(20,60),(40,50)], # rectangulary shape test pts
2 : [[20,10],[10,20],[30,20],[-5,0],[20,15]] , # triangle  test pts
3 : [[0,0],[0,10],[20,0],[20,10],[10,0],[10,5],[15,5]],  # bow-tie shape test pts
4 : [[0,0],[0,10],[20,0],[20,10],[10,0],[10,5],[15,2],[30,8]],  # rect shape test pts
5 : [[0,0],[0,10],[20,0],[20,10],[10,0],[10,5],[15,2],[30,8]]  # rect shape test pts
}

#print bbPath.contains_points(points) #0 if outside, 1 if inside
for data in zip(polys.itervalues(),points.itervalues()):
    plot(data[0],data[1])