Pandas 每组缺失值插补

Pandas per group imputation of missing values

如何为 pandas 中的每个指标实现这样的按国家/地区归集?

我想估算每组的缺失值

编辑

所需的输出应该类似于

mydf = pd.DataFrame({'Country':['no-A-state','no-ISO-state', 'no-A-state','no-ISO-state',
                                'germany','serbia','serbia', 'austria', 
                                'germany','serbia', 'austria',],
                   'indicatorKPI':['SP.DYN.LE00.IN','NY.GDP.MKTP.CD', 'SP.DYN.LE00.IN',
                                   'SP.DYN.LE00.IN','NY.GDP.MKTP.CD','SP.DYN.LE00.IN','NY.GDP.MKTP.CD','NY.GDP.MKTP.CD', 'SP.DYN.LE00.IN','NY.GDP.MKTP.CD', 'SP.DYN.LE00.IN'],
                     'value':['MIN of all for this indicator', 'MEAN of all for this indicator','MIN of all for this indicator','MEAN of all for this indicator', 0.9,'MEAN of all for SP.DYN.LE00.IN indicator',0.7, 'MEAN of all for NY.GDP.MKTP.CD indicator',0.2, 0.3, 0.6]
                   })

根据您的新示例 df,以下对我有效:

In [185]:
mydf.loc[mydf['Country'] == 'no-A-state', 'value'] = mydf['value'].min()
mydf.loc[mydf['Country'] == 'no-ISO-state', 'value'] = mydf['value'].mean()
mydf.loc[mydf['value'].isnull(), 'value'] = mydf['indicatorKPI'].map(mydf.groupby('indicatorKPI')['value'].mean())
mydf

Out[185]:
         Country    indicatorKPI     value
0     no-A-state  SP.DYN.LE00.IN  0.200000
1   no-ISO-state  NY.GDP.MKTP.CD  0.442857
2     no-A-state  SP.DYN.LE00.IN  0.200000
3   no-ISO-state  SP.DYN.LE00.IN  0.442857
4        germany  NY.GDP.MKTP.CD  0.900000
5         serbia  SP.DYN.LE00.IN  0.328571
6         serbia  NY.GDP.MKTP.CD  0.700000
7        austria  NY.GDP.MKTP.CD  0.585714
8        germany  SP.DYN.LE00.IN  0.200000
9         serbia  NY.GDP.MKTP.CD  0.300000
10       austria  SP.DYN.LE00.IN  0.600000

基本上这是为每个条件填充缺失值,因此我们为 'no-A-state' 个国家/地区设置最小值,然后为 'no-ISO-state' 个国家/地区设置平均值。然后我们在 'indicatorKPI' 上分组并计算每个组的平均值并再次分配给空值行,各个国家的平均值使用 map 执行查找

以下是分解的步骤:

In [187]:
mydf.groupby('indicatorKPI')['value'].mean()

Out[187]:

indicatorKPI
NY.GDP.MKTP.CD    0.633333
SP.DYN.LE00.IN    0.400000
Name: value, dtype: float64

In [188]:
mydf['indicatorKPI'].map(mydf.groupby('indicatorKPI')['value'].mean())

Out[188]:
0     0.400000
1     0.633333
2     0.400000
3     0.400000
4     0.633333
5     0.400000
6     0.633333
7     0.633333
8     0.400000
9     0.633333
10    0.400000
Name: indicatorKPI, dtype: float64