如何设置STM32生成标准的CRC32
How to set STM32 to generate standard CRC32
我正在尝试使用 STM32L4 硬件模块生成 CRC。我想验证 fatfs 文件,所以基本上我有字节数组。我正在使用这个 CRC generator.
不幸的是,我不知道如何设置 STM32L4 来生成相同的结果。我需要 CRC32 并且我有
配置:
hcrc.Instance = CRC;
/* The default polynomial is not used. It is required to defined it in CrcHandle.Init.GeneratingPolynomial*/
hcrc.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_DISABLE;
/* Set the value of the polynomial */
hcrc.Init.GeneratingPolynomial = 0x4C11DB7;
//hcrc.Init.GeneratingPolynomial = 0xFB3EE248;
hcrc.Init.CRCLength= CRC_POLYLENGTH_32B;
/* The default init value is used */
/* The default init value is not used */
hcrc.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_ENABLE;
/* User init value is used instead */
//hcrc.Init.InitValue = 0;
hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE;
//hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE;
/* The input data are inverted by word */
//hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_WORD;
//hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE;
hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE;
hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
HAL_CRC_Init(&hcrc);
测试:
uint8_t test[] = {49,50,51,52};
uint32_t uwCRCValue = HAL_CRC_Calculate(&hcrc,(uint32_t *) test, 4);
结果:A695C4AA
我没主意了。有一种方法可以让我成功获得 uint32_t test[]
并将输入设置为 hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
不幸的是我有 uint8_t
...
使用以下代码计算cc32。 STM32 CRC单元计算出的CRC32和我们标准的CRC32不一样,它使用的是big endian,不会和0xFFFFFFFF异或。
u32 CRC32_ForBytes(u8 *pData, u32 uLen);
#define UNUSED(x) ((void)(x))
/**
* @brief CRC functions
*/
#define __HAL_RCC_CRC_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN);\
/* Delay after an RCC peripheral clock enabling */\
tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN);\
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_CRC_CLK_DISABLE() (RCC->AHBENR &= ~(RCC_AHBENR_CRCEN))
#define CRC32_POLYNOMIAL ((u32)0xEDB88320)
#define RCC_CRC_BIT ((u32)0x00001000)
/**
* @brief Calc CRC32 for data in bytes
* @param pData Buffer pointer
* @param uLen Buffer Length
* @retval CRC32 Checksum
*/
u32 CRC32_ForBytes(u8 *pData,u32 uLen)
{
u32 uIndex= 0,uData = 0,i;
uIndex = uLen >> 2;
__HAL_RCC_CRC_CLK_ENABLE();
/* Reset CRC generator */
CRC_ResetDR();
while(uIndex--)
{
#ifdef USED_BIG_ENDIAN
uData = __REV((u32*)pData);
#else
((u8 *)&uData)[0] = pData[0];
((u8 *)&uData)[1] = pData[1];
((u8 *)&uData)[2] = pData[2];
((u8 *)&uData)[3] = pData[3];
#endif
pData += 4;
uData = revbit(uData);
CRC->DR = uData;
}
uData = revbit(CRC->DR);
uIndex = uLen & 0x03;
while(uIndex--)
{
uData ^= (u32)*pData++;
for(i = 0;i < 8;i++)
if (uData & 0x1)
uData = (uData >> 1) ^ CRC32_POLYNOMIAL;
else
uData >>= 1;
}
__HAL_RCC_CRC_CLK_DISABLE();
return uData^0xFFFFFFFF;
}
static u32 revbit(u32 uData)
{
u32 uRevData = 0,uIndex = 0;
uRevData |= ((uData >> uIndex) & 0x01);
for(uIndex = 1;uIndex < 32;uIndex++)
{
uRevData <<= 1;
uRevData |= ((uData >> uIndex) & 0x01);
}
return uRevData;
}
像这样计算您的 CRC32:
u32 uwCRCValue = CRC32_ForBytes(&test, 4);
使用 CubeMX,我使用这些设置生成:
hcrc.Instance = CRC;
hcrc.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_ENABLE;
hcrc.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_ENABLE;
hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE;
hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE;
hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
像这样计算 CRC:
uint32_t crc = HAL_CRC_Calculate(&hcrc, (uint32_t *)address, length);
最后反转:
crc = ~crc;
如果您想知道多项式 hcrc.Init.GeneratingPolynomial
和 hcrc.Init.CRCLength
的含义,这是一个小提示。在您的初始示例中,您的多项式设置将给出:
> polyviz(0x4C11DB7, 32)
x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1
如果你安装了node.js,你可以使用我写的下面的函数将stm32 crc生成多项式转换为crc多项式公式...+x^2+x^1+1
形式。
function polyviz(Pol, PolyLength)
{
var msb = 31;
process.stdout.write(" x^"+(PolyLength));
while (msb-- > 0)
{
if ((Pol & (1 << msb)))
{
if (msb == 0)
process.stdout.write(" + 1");
else
process.stdout.write(" + x^"+(msb));
}
}
process.stdout.write("\r\n");
}
// Examples from HAL_CRCEx_Polynomial_Set():
// * for a polynomial of degree 16, X^16 + X^12 + X^5 + 1 is written 0x1021 (Bin: 0001 0000 0010 0001 )
polyviz(0x1021, 16)
// * for a polynomial of degree 7, X^7 + X^6 + X^5 + X^2 + 1 is written 0x65 (Bin: 0110 0101)
polyviz(0x65, 7)
使用此方法,您可以确认您是否正确设置了多项式。 (因为许多crc标准使用多项式表示)
这对我有用。
static CRC_HandleTypeDef hcrc = {
.Instance = CRC,
.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_ENABLE,
.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_ENABLE,
.Init.CRCLength = CRC_POLYLENGTH_32B,
.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE,
.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE,
.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES,
};
和手动方法
static const uint32_t crc_table[0x100] = {
0x00000000, 0x04C11DB7, 0x09823B6E, 0x0D4326D9, 0x130476DC, 0x17C56B6B, 0x1A864DB2, 0x1E475005, 0x2608EDB8, 0x22C9F00F, 0x2F8AD6D6, 0x2B4BCB61, 0x350C9B64, 0x31CD86D3, 0x3C8EA00A, 0x384FBDBD,
0x4C11DB70, 0x48D0C6C7, 0x4593E01E, 0x4152FDA9, 0x5F15ADAC, 0x5BD4B01B, 0x569796C2, 0x52568B75, 0x6A1936C8, 0x6ED82B7F, 0x639B0DA6, 0x675A1011, 0x791D4014, 0x7DDC5DA3, 0x709F7B7A, 0x745E66CD,
0x9823B6E0, 0x9CE2AB57, 0x91A18D8E, 0x95609039, 0x8B27C03C, 0x8FE6DD8B, 0x82A5FB52, 0x8664E6E5, 0xBE2B5B58, 0xBAEA46EF, 0xB7A96036, 0xB3687D81, 0xAD2F2D84, 0xA9EE3033, 0xA4AD16EA, 0xA06C0B5D,
0xD4326D90, 0xD0F37027, 0xDDB056FE, 0xD9714B49, 0xC7361B4C, 0xC3F706FB, 0xCEB42022, 0xCA753D95, 0xF23A8028, 0xF6FB9D9F, 0xFBB8BB46, 0xFF79A6F1, 0xE13EF6F4, 0xE5FFEB43, 0xE8BCCD9A, 0xEC7DD02D,
0x34867077, 0x30476DC0, 0x3D044B19, 0x39C556AE, 0x278206AB, 0x23431B1C, 0x2E003DC5, 0x2AC12072, 0x128E9DCF, 0x164F8078, 0x1B0CA6A1, 0x1FCDBB16, 0x018AEB13, 0x054BF6A4, 0x0808D07D, 0x0CC9CDCA,
0x7897AB07, 0x7C56B6B0, 0x71159069, 0x75D48DDE, 0x6B93DDDB, 0x6F52C06C, 0x6211E6B5, 0x66D0FB02, 0x5E9F46BF, 0x5A5E5B08, 0x571D7DD1, 0x53DC6066, 0x4D9B3063, 0x495A2DD4, 0x44190B0D, 0x40D816BA,
0xACA5C697, 0xA864DB20, 0xA527FDF9, 0xA1E6E04E, 0xBFA1B04B, 0xBB60ADFC, 0xB6238B25, 0xB2E29692, 0x8AAD2B2F, 0x8E6C3698, 0x832F1041, 0x87EE0DF6, 0x99A95DF3, 0x9D684044, 0x902B669D, 0x94EA7B2A,
0xE0B41DE7, 0xE4750050, 0xE9362689, 0xEDF73B3E, 0xF3B06B3B, 0xF771768C, 0xFA325055, 0xFEF34DE2, 0xC6BCF05F, 0xC27DEDE8, 0xCF3ECB31, 0xCBFFD686, 0xD5B88683, 0xD1799B34, 0xDC3ABDED, 0xD8FBA05A,
0x690CE0EE, 0x6DCDFD59, 0x608EDB80, 0x644FC637, 0x7A089632, 0x7EC98B85, 0x738AAD5C, 0x774BB0EB, 0x4F040D56, 0x4BC510E1, 0x46863638, 0x42472B8F, 0x5C007B8A, 0x58C1663D, 0x558240E4, 0x51435D53,
0x251D3B9E, 0x21DC2629, 0x2C9F00F0, 0x285E1D47, 0x36194D42, 0x32D850F5, 0x3F9B762C, 0x3B5A6B9B, 0x0315D626, 0x07D4CB91, 0x0A97ED48, 0x0E56F0FF, 0x1011A0FA, 0x14D0BD4D, 0x19939B94, 0x1D528623,
0xF12F560E, 0xF5EE4BB9, 0xF8AD6D60, 0xFC6C70D7, 0xE22B20D2, 0xE6EA3D65, 0xEBA91BBC, 0xEF68060B, 0xD727BBB6, 0xD3E6A601, 0xDEA580D8, 0xDA649D6F, 0xC423CD6A, 0xC0E2D0DD, 0xCDA1F604, 0xC960EBB3,
0xBD3E8D7E, 0xB9FF90C9, 0xB4BCB610, 0xB07DABA7, 0xAE3AFBA2, 0xAAFBE615, 0xA7B8C0CC, 0xA379DD7B, 0x9B3660C6, 0x9FF77D71, 0x92B45BA8, 0x9675461F, 0x8832161A, 0x8CF30BAD, 0x81B02D74, 0x857130C3,
0x5D8A9099, 0x594B8D2E, 0x5408ABF7, 0x50C9B640, 0x4E8EE645, 0x4A4FFBF2, 0x470CDD2B, 0x43CDC09C, 0x7B827D21, 0x7F436096, 0x7200464F, 0x76C15BF8, 0x68860BFD, 0x6C47164A, 0x61043093, 0x65C52D24,
0x119B4BE9, 0x155A565E, 0x18197087, 0x1CD86D30, 0x029F3D35, 0x065E2082, 0x0B1D065B, 0x0FDC1BEC, 0x3793A651, 0x3352BBE6, 0x3E119D3F, 0x3AD08088, 0x2497D08D, 0x2056CD3A, 0x2D15EBE3, 0x29D4F654,
0xC5A92679, 0xC1683BCE, 0xCC2B1D17, 0xC8EA00A0, 0xD6AD50A5, 0xD26C4D12, 0xDF2F6BCB, 0xDBEE767C, 0xE3A1CBC1, 0xE760D676, 0xEA23F0AF, 0xEEE2ED18, 0xF0A5BD1D, 0xF464A0AA, 0xF9278673, 0xFDE69BC4,
0x89B8FD09, 0x8D79E0BE, 0x803AC667, 0x84FBDBD0, 0x9ABC8BD5, 0x9E7D9662, 0x933EB0BB, 0x97FFAD0C, 0xAFB010B1, 0xAB710D06, 0xA6322BDF, 0xA2F33668, 0xBCB4666D, 0xB8757BDA, 0xB5365D03, 0xB1F740B4,
};
uint32_t CalcCRC(uint8_t * pData, uint32_t DataLength)
{
uint32_t Checksum = 0xFFFFFFFF;
for(unsigned int i=0; i < DataLength; i++)
{
uint8_t top = (uint8_t)(Checksum >> 24);
top ^= pData[i];
Checksum = (Checksum << 8) ^ crc_table[top];
}
return Checksum;
}
我找到了这个教程(适用于 STM32F746)并将其与 STM32F407VGT6 一起使用,
有很多IDE配置,直接访问它们可能会更好,对不起,我没有直接嵌入所有内容:
Hands-on: CRC Checksum Generation
注意:在这种情况下,要写入的文件是ROM.hex(您需要配置STM32CubeIDE才能自动执行此操作, IDE 使用 *.elf 文件, 看下面的提示如何操作):
Some tips and solutions about this CRC usage (Windows/Linux)
我正在尝试使用 STM32L4 硬件模块生成 CRC。我想验证 fatfs 文件,所以基本上我有字节数组。我正在使用这个 CRC generator.
不幸的是,我不知道如何设置 STM32L4 来生成相同的结果。我需要 CRC32 并且我有
配置:
hcrc.Instance = CRC;
/* The default polynomial is not used. It is required to defined it in CrcHandle.Init.GeneratingPolynomial*/
hcrc.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_DISABLE;
/* Set the value of the polynomial */
hcrc.Init.GeneratingPolynomial = 0x4C11DB7;
//hcrc.Init.GeneratingPolynomial = 0xFB3EE248;
hcrc.Init.CRCLength= CRC_POLYLENGTH_32B;
/* The default init value is used */
/* The default init value is not used */
hcrc.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_ENABLE;
/* User init value is used instead */
//hcrc.Init.InitValue = 0;
hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE;
//hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE;
/* The input data are inverted by word */
//hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_WORD;
//hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE;
hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE;
hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
HAL_CRC_Init(&hcrc);
测试:
uint8_t test[] = {49,50,51,52};
uint32_t uwCRCValue = HAL_CRC_Calculate(&hcrc,(uint32_t *) test, 4);
结果:A695C4AA
我没主意了。有一种方法可以让我成功获得 uint32_t test[]
并将输入设置为 hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
不幸的是我有 uint8_t
...
使用以下代码计算cc32。 STM32 CRC单元计算出的CRC32和我们标准的CRC32不一样,它使用的是big endian,不会和0xFFFFFFFF异或。
u32 CRC32_ForBytes(u8 *pData, u32 uLen);
#define UNUSED(x) ((void)(x))
/**
* @brief CRC functions
*/
#define __HAL_RCC_CRC_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN);\
/* Delay after an RCC peripheral clock enabling */\
tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN);\
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_CRC_CLK_DISABLE() (RCC->AHBENR &= ~(RCC_AHBENR_CRCEN))
#define CRC32_POLYNOMIAL ((u32)0xEDB88320)
#define RCC_CRC_BIT ((u32)0x00001000)
/**
* @brief Calc CRC32 for data in bytes
* @param pData Buffer pointer
* @param uLen Buffer Length
* @retval CRC32 Checksum
*/
u32 CRC32_ForBytes(u8 *pData,u32 uLen)
{
u32 uIndex= 0,uData = 0,i;
uIndex = uLen >> 2;
__HAL_RCC_CRC_CLK_ENABLE();
/* Reset CRC generator */
CRC_ResetDR();
while(uIndex--)
{
#ifdef USED_BIG_ENDIAN
uData = __REV((u32*)pData);
#else
((u8 *)&uData)[0] = pData[0];
((u8 *)&uData)[1] = pData[1];
((u8 *)&uData)[2] = pData[2];
((u8 *)&uData)[3] = pData[3];
#endif
pData += 4;
uData = revbit(uData);
CRC->DR = uData;
}
uData = revbit(CRC->DR);
uIndex = uLen & 0x03;
while(uIndex--)
{
uData ^= (u32)*pData++;
for(i = 0;i < 8;i++)
if (uData & 0x1)
uData = (uData >> 1) ^ CRC32_POLYNOMIAL;
else
uData >>= 1;
}
__HAL_RCC_CRC_CLK_DISABLE();
return uData^0xFFFFFFFF;
}
static u32 revbit(u32 uData)
{
u32 uRevData = 0,uIndex = 0;
uRevData |= ((uData >> uIndex) & 0x01);
for(uIndex = 1;uIndex < 32;uIndex++)
{
uRevData <<= 1;
uRevData |= ((uData >> uIndex) & 0x01);
}
return uRevData;
}
像这样计算您的 CRC32:
u32 uwCRCValue = CRC32_ForBytes(&test, 4);
使用 CubeMX,我使用这些设置生成:
hcrc.Instance = CRC;
hcrc.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_ENABLE;
hcrc.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_ENABLE;
hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE;
hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE;
hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
像这样计算 CRC:
uint32_t crc = HAL_CRC_Calculate(&hcrc, (uint32_t *)address, length);
最后反转:
crc = ~crc;
如果您想知道多项式 hcrc.Init.GeneratingPolynomial
和 hcrc.Init.CRCLength
的含义,这是一个小提示。在您的初始示例中,您的多项式设置将给出:
> polyviz(0x4C11DB7, 32)
x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1
如果你安装了node.js,你可以使用我写的下面的函数将stm32 crc生成多项式转换为crc多项式公式...+x^2+x^1+1
形式。
function polyviz(Pol, PolyLength)
{
var msb = 31;
process.stdout.write(" x^"+(PolyLength));
while (msb-- > 0)
{
if ((Pol & (1 << msb)))
{
if (msb == 0)
process.stdout.write(" + 1");
else
process.stdout.write(" + x^"+(msb));
}
}
process.stdout.write("\r\n");
}
// Examples from HAL_CRCEx_Polynomial_Set():
// * for a polynomial of degree 16, X^16 + X^12 + X^5 + 1 is written 0x1021 (Bin: 0001 0000 0010 0001 )
polyviz(0x1021, 16)
// * for a polynomial of degree 7, X^7 + X^6 + X^5 + X^2 + 1 is written 0x65 (Bin: 0110 0101)
polyviz(0x65, 7)
使用此方法,您可以确认您是否正确设置了多项式。 (因为许多crc标准使用多项式表示)
这对我有用。
static CRC_HandleTypeDef hcrc = {
.Instance = CRC,
.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_ENABLE,
.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_ENABLE,
.Init.CRCLength = CRC_POLYLENGTH_32B,
.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE,
.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE,
.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES,
};
和手动方法
static const uint32_t crc_table[0x100] = {
0x00000000, 0x04C11DB7, 0x09823B6E, 0x0D4326D9, 0x130476DC, 0x17C56B6B, 0x1A864DB2, 0x1E475005, 0x2608EDB8, 0x22C9F00F, 0x2F8AD6D6, 0x2B4BCB61, 0x350C9B64, 0x31CD86D3, 0x3C8EA00A, 0x384FBDBD,
0x4C11DB70, 0x48D0C6C7, 0x4593E01E, 0x4152FDA9, 0x5F15ADAC, 0x5BD4B01B, 0x569796C2, 0x52568B75, 0x6A1936C8, 0x6ED82B7F, 0x639B0DA6, 0x675A1011, 0x791D4014, 0x7DDC5DA3, 0x709F7B7A, 0x745E66CD,
0x9823B6E0, 0x9CE2AB57, 0x91A18D8E, 0x95609039, 0x8B27C03C, 0x8FE6DD8B, 0x82A5FB52, 0x8664E6E5, 0xBE2B5B58, 0xBAEA46EF, 0xB7A96036, 0xB3687D81, 0xAD2F2D84, 0xA9EE3033, 0xA4AD16EA, 0xA06C0B5D,
0xD4326D90, 0xD0F37027, 0xDDB056FE, 0xD9714B49, 0xC7361B4C, 0xC3F706FB, 0xCEB42022, 0xCA753D95, 0xF23A8028, 0xF6FB9D9F, 0xFBB8BB46, 0xFF79A6F1, 0xE13EF6F4, 0xE5FFEB43, 0xE8BCCD9A, 0xEC7DD02D,
0x34867077, 0x30476DC0, 0x3D044B19, 0x39C556AE, 0x278206AB, 0x23431B1C, 0x2E003DC5, 0x2AC12072, 0x128E9DCF, 0x164F8078, 0x1B0CA6A1, 0x1FCDBB16, 0x018AEB13, 0x054BF6A4, 0x0808D07D, 0x0CC9CDCA,
0x7897AB07, 0x7C56B6B0, 0x71159069, 0x75D48DDE, 0x6B93DDDB, 0x6F52C06C, 0x6211E6B5, 0x66D0FB02, 0x5E9F46BF, 0x5A5E5B08, 0x571D7DD1, 0x53DC6066, 0x4D9B3063, 0x495A2DD4, 0x44190B0D, 0x40D816BA,
0xACA5C697, 0xA864DB20, 0xA527FDF9, 0xA1E6E04E, 0xBFA1B04B, 0xBB60ADFC, 0xB6238B25, 0xB2E29692, 0x8AAD2B2F, 0x8E6C3698, 0x832F1041, 0x87EE0DF6, 0x99A95DF3, 0x9D684044, 0x902B669D, 0x94EA7B2A,
0xE0B41DE7, 0xE4750050, 0xE9362689, 0xEDF73B3E, 0xF3B06B3B, 0xF771768C, 0xFA325055, 0xFEF34DE2, 0xC6BCF05F, 0xC27DEDE8, 0xCF3ECB31, 0xCBFFD686, 0xD5B88683, 0xD1799B34, 0xDC3ABDED, 0xD8FBA05A,
0x690CE0EE, 0x6DCDFD59, 0x608EDB80, 0x644FC637, 0x7A089632, 0x7EC98B85, 0x738AAD5C, 0x774BB0EB, 0x4F040D56, 0x4BC510E1, 0x46863638, 0x42472B8F, 0x5C007B8A, 0x58C1663D, 0x558240E4, 0x51435D53,
0x251D3B9E, 0x21DC2629, 0x2C9F00F0, 0x285E1D47, 0x36194D42, 0x32D850F5, 0x3F9B762C, 0x3B5A6B9B, 0x0315D626, 0x07D4CB91, 0x0A97ED48, 0x0E56F0FF, 0x1011A0FA, 0x14D0BD4D, 0x19939B94, 0x1D528623,
0xF12F560E, 0xF5EE4BB9, 0xF8AD6D60, 0xFC6C70D7, 0xE22B20D2, 0xE6EA3D65, 0xEBA91BBC, 0xEF68060B, 0xD727BBB6, 0xD3E6A601, 0xDEA580D8, 0xDA649D6F, 0xC423CD6A, 0xC0E2D0DD, 0xCDA1F604, 0xC960EBB3,
0xBD3E8D7E, 0xB9FF90C9, 0xB4BCB610, 0xB07DABA7, 0xAE3AFBA2, 0xAAFBE615, 0xA7B8C0CC, 0xA379DD7B, 0x9B3660C6, 0x9FF77D71, 0x92B45BA8, 0x9675461F, 0x8832161A, 0x8CF30BAD, 0x81B02D74, 0x857130C3,
0x5D8A9099, 0x594B8D2E, 0x5408ABF7, 0x50C9B640, 0x4E8EE645, 0x4A4FFBF2, 0x470CDD2B, 0x43CDC09C, 0x7B827D21, 0x7F436096, 0x7200464F, 0x76C15BF8, 0x68860BFD, 0x6C47164A, 0x61043093, 0x65C52D24,
0x119B4BE9, 0x155A565E, 0x18197087, 0x1CD86D30, 0x029F3D35, 0x065E2082, 0x0B1D065B, 0x0FDC1BEC, 0x3793A651, 0x3352BBE6, 0x3E119D3F, 0x3AD08088, 0x2497D08D, 0x2056CD3A, 0x2D15EBE3, 0x29D4F654,
0xC5A92679, 0xC1683BCE, 0xCC2B1D17, 0xC8EA00A0, 0xD6AD50A5, 0xD26C4D12, 0xDF2F6BCB, 0xDBEE767C, 0xE3A1CBC1, 0xE760D676, 0xEA23F0AF, 0xEEE2ED18, 0xF0A5BD1D, 0xF464A0AA, 0xF9278673, 0xFDE69BC4,
0x89B8FD09, 0x8D79E0BE, 0x803AC667, 0x84FBDBD0, 0x9ABC8BD5, 0x9E7D9662, 0x933EB0BB, 0x97FFAD0C, 0xAFB010B1, 0xAB710D06, 0xA6322BDF, 0xA2F33668, 0xBCB4666D, 0xB8757BDA, 0xB5365D03, 0xB1F740B4,
};
uint32_t CalcCRC(uint8_t * pData, uint32_t DataLength)
{
uint32_t Checksum = 0xFFFFFFFF;
for(unsigned int i=0; i < DataLength; i++)
{
uint8_t top = (uint8_t)(Checksum >> 24);
top ^= pData[i];
Checksum = (Checksum << 8) ^ crc_table[top];
}
return Checksum;
}
我找到了这个教程(适用于 STM32F746)并将其与 STM32F407VGT6 一起使用,
有很多IDE配置,直接访问它们可能会更好,对不起,我没有直接嵌入所有内容:
Hands-on: CRC Checksum Generation
注意:在这种情况下,要写入的文件是ROM.hex(您需要配置STM32CubeIDE才能自动执行此操作, IDE 使用 *.elf 文件, 看下面的提示如何操作):
Some tips and solutions about this CRC usage (Windows/Linux)