R H2O - 详细总结
R H2O - detailed summary
我使用 h2o 库进行分类。我想知道它制作的每个节点的重量细节。假设我用model
命名模型,如果我用summary(model)
,它只会显示每层的平均权重和平均偏差,我需要知道每个权重的细节。是否可以打印每个细节重量?
任何建议,将不胜感激。
抱歉糟糕的英语
train[1,]
0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1
train[2,]
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 2
model = h2o.deeplearning(x = 1:100,y = 101
training_frame = train,
activation = "Tanh",
balance_classes = TRUE,
hidden = c(15,15),
momentum_stable = 0.99,
epochs = 50)
Scoring History:
timestamp duration training_speed epochs iterations samples training_rmse training_logloss
1 2016-09-26 23:50:53 0.000 sec 0.00000 0 0.000000
2 2016-09-26 23:50:53 0.494 sec 8783 rows/sec 5.00000 1 650.000000 0.81033 2.04045
3 2016-09-26 23:50:53 1.053 sec 10586 rows/sec 50.00000 10 6500.000000 0.23170 0.22766
training_classification_error
1
2 0.63077
3 0.00000
这是我的模型总结的一部分
layer units type dropout l1 l2 mean_rate rate_rms momentum mean_weight weight_rms mean_bias bias_rms
1 1 100 Input 0.00 %
2 2 15 Tanh 0.00 % 0.000000 0.000000 0.005683 0.001610 0.000000 0.004570 0.148204 -0.019728 0.061853
3 3 15 Tanh 0.00 % 0.000000 0.000000 0.003509 0.000724 0.000000 0.003555 0.343449 0.007262 0.110244
4 4 26 Softmax 0.000000 0.000000 0.010830 0.006383 0.000000 0.005078 0.907516 -0.186089 0.166363
构建模型时,设置标志以导出权重和偏差。然后,一旦构建了模型,您就可以使用 h2o.weights()
和 h2o.biases()
.
model = h2o.deeplearning(x = 1:100,y = 101
training_frame = train,
activation = "Tanh",
balance_classes = TRUE,
hidden = c(15,15),
momentum_stable = 0.99,
epochs = 50,
export_weights_and_biases = TRUE # <--- add this
)
firstLayerWeights = h2o.weights(model, 1)
secondLayerWeights = h2o.weights(model, 2)
我使用 h2o 库进行分类。我想知道它制作的每个节点的重量细节。假设我用model
命名模型,如果我用summary(model)
,它只会显示每层的平均权重和平均偏差,我需要知道每个权重的细节。是否可以打印每个细节重量?
任何建议,将不胜感激。
抱歉糟糕的英语
train[1,]
0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1
train[2,]
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 2
model = h2o.deeplearning(x = 1:100,y = 101
training_frame = train,
activation = "Tanh",
balance_classes = TRUE,
hidden = c(15,15),
momentum_stable = 0.99,
epochs = 50)
Scoring History:
timestamp duration training_speed epochs iterations samples training_rmse training_logloss
1 2016-09-26 23:50:53 0.000 sec 0.00000 0 0.000000
2 2016-09-26 23:50:53 0.494 sec 8783 rows/sec 5.00000 1 650.000000 0.81033 2.04045
3 2016-09-26 23:50:53 1.053 sec 10586 rows/sec 50.00000 10 6500.000000 0.23170 0.22766
training_classification_error
1
2 0.63077
3 0.00000
这是我的模型总结的一部分
layer units type dropout l1 l2 mean_rate rate_rms momentum mean_weight weight_rms mean_bias bias_rms
1 1 100 Input 0.00 %
2 2 15 Tanh 0.00 % 0.000000 0.000000 0.005683 0.001610 0.000000 0.004570 0.148204 -0.019728 0.061853
3 3 15 Tanh 0.00 % 0.000000 0.000000 0.003509 0.000724 0.000000 0.003555 0.343449 0.007262 0.110244
4 4 26 Softmax 0.000000 0.000000 0.010830 0.006383 0.000000 0.005078 0.907516 -0.186089 0.166363
构建模型时,设置标志以导出权重和偏差。然后,一旦构建了模型,您就可以使用 h2o.weights()
和 h2o.biases()
.
model = h2o.deeplearning(x = 1:100,y = 101
training_frame = train,
activation = "Tanh",
balance_classes = TRUE,
hidden = c(15,15),
momentum_stable = 0.99,
epochs = 50,
export_weights_and_biases = TRUE # <--- add this
)
firstLayerWeights = h2o.weights(model, 1)
secondLayerWeights = h2o.weights(model, 2)