Mongodb 在单个聚合中使用多个组运算符
Mongodb use multiple group operator in single aggregation
我正在使用 mongodb 聚合来获取不同字段的计数。以下是 mobile
collection 中的一些文档:-
{
"title": "Moto G",
"manufacturer": "Motorola",
"releasing": ISODate("2011-03-00T10:26:48.424Z"),
"rating": "high"
}
{
"title": "Asus Zenfone 2",
"manufacturer": "Asus",
"releasing": ISODate("2014-10-00T10:26:48.424Z"),
"rating": "high"
}
{
"title": "Moto Z",
"manufacturer": "Motorola",
"releasing": ISODate("2016-10-12T10:26:48.424Z"),
"rating": "none"
}
{
"title": "Asus Zenfone 3",
"manufacturer": "Asus",
"releasing": ISODate("2016-08-00T10:26:48.424Z"),
"rating": "medium"
}
我可以找到 manufacturer
和 rating
计数,但这失败了:
db.mobile.aggregate([
{
$group: { _id: "$manufacturer", count: { $sum: 1 } }
}, {
$group: { _id: "$rating", count: { $sum: 1 } }
}
])
输出:-
{
"_id" : null,
"count" : 2.0
}
预期输出类似于:-
{
"_id":"Motorola",
"count" : 2.0
}
{
"_id":"Asus",
"count" : 2.0
}
{
"_id":"high",
"count" : 2.0
}
{
"_id":"none",
"count" : 1.0
}
{
"_id":"medium",
"count" : 1.0
}
我相信您正在执行聚合操作,通过 manufacturer
和 rating
键对文档进行分组,然后对 manufacturer
进行进一步分组,同时聚合每个 manufacturer
,类似于以下管道:
db.mobile.aggregate([
{
"$group": {
"_id": {
"manufacturer": "$manufacturer",
"rating": "$rating"
},
"count": { "$sum": 1 }
}
},
{
"$group": {
"_id": "$_id.manufacturer",
"total": { "$sum": 1 },
"counts": {
"$push": {
"rating": "$_id.rating",
"count": "$count"
}
}
}
}
])
示例输出
/* 1 */
{
"_id" : "Motorola",
"total" : 2,
"counts" : [
{
"rating" : "high",
"count" : 1
},
{
"rating" : "none",
"count" : 1
}
]
}
/* 2 */
{
"_id" : "Asus",
"total" : 2,
"counts" : [
{
"rating" : "high",
"count" : 1
},
{
"rating" : "medium",
"count" : 1
}
]
}
或者如果您想要更多 "flat" 或 "denormalised" 结果,运行 此聚合操作:
db.mobile.aggregate([
{
"$group": {
"_id": "$manufacturer",
"total": { "$sum": 1 },
"high_ratings": {
"$sum": {
"$cond": [ { "$eq": [ "$rating", "high" ] }, 1, 0 ]
}
},
"medium_ratings": {
"$sum": {
"$cond": [ { "$eq": [ "$rating", "medium" ] }, 1, 0 ]
}
},
"low_ratings": {
"$sum": {
"$cond": [ { "$eq": [ "$rating", "low" ] }, 1, 0 ]
}
},
"none_ratings": {
"$sum": {
"$cond": [ { "$eq": [ "$rating", "none" ] }, 1, 0 ]
}
}
}
}
])
示例输出
/* 1 */
{
"_id" : "Motorola",
"total" : 2,
"high_ratings" : 1,
"medium_ratings" : 0,
"low_ratings" : 0,
"none_ratings" : 1
}
/* 2 */
{
"_id" : "Asus",
"total" : 2,
"high_ratings" : 1,
"medium_ratings" : 1,
"low_ratings" : 0,
"none_ratings" : 0
}
我正在使用 mongodb 聚合来获取不同字段的计数。以下是 mobile
collection 中的一些文档:-
{
"title": "Moto G",
"manufacturer": "Motorola",
"releasing": ISODate("2011-03-00T10:26:48.424Z"),
"rating": "high"
}
{
"title": "Asus Zenfone 2",
"manufacturer": "Asus",
"releasing": ISODate("2014-10-00T10:26:48.424Z"),
"rating": "high"
}
{
"title": "Moto Z",
"manufacturer": "Motorola",
"releasing": ISODate("2016-10-12T10:26:48.424Z"),
"rating": "none"
}
{
"title": "Asus Zenfone 3",
"manufacturer": "Asus",
"releasing": ISODate("2016-08-00T10:26:48.424Z"),
"rating": "medium"
}
我可以找到 manufacturer
和 rating
计数,但这失败了:
db.mobile.aggregate([
{
$group: { _id: "$manufacturer", count: { $sum: 1 } }
}, {
$group: { _id: "$rating", count: { $sum: 1 } }
}
])
输出:-
{
"_id" : null,
"count" : 2.0
}
预期输出类似于:-
{
"_id":"Motorola",
"count" : 2.0
}
{
"_id":"Asus",
"count" : 2.0
}
{
"_id":"high",
"count" : 2.0
}
{
"_id":"none",
"count" : 1.0
}
{
"_id":"medium",
"count" : 1.0
}
我相信您正在执行聚合操作,通过 manufacturer
和 rating
键对文档进行分组,然后对 manufacturer
进行进一步分组,同时聚合每个 manufacturer
,类似于以下管道:
db.mobile.aggregate([
{
"$group": {
"_id": {
"manufacturer": "$manufacturer",
"rating": "$rating"
},
"count": { "$sum": 1 }
}
},
{
"$group": {
"_id": "$_id.manufacturer",
"total": { "$sum": 1 },
"counts": {
"$push": {
"rating": "$_id.rating",
"count": "$count"
}
}
}
}
])
示例输出
/* 1 */
{
"_id" : "Motorola",
"total" : 2,
"counts" : [
{
"rating" : "high",
"count" : 1
},
{
"rating" : "none",
"count" : 1
}
]
}
/* 2 */
{
"_id" : "Asus",
"total" : 2,
"counts" : [
{
"rating" : "high",
"count" : 1
},
{
"rating" : "medium",
"count" : 1
}
]
}
或者如果您想要更多 "flat" 或 "denormalised" 结果,运行 此聚合操作:
db.mobile.aggregate([
{
"$group": {
"_id": "$manufacturer",
"total": { "$sum": 1 },
"high_ratings": {
"$sum": {
"$cond": [ { "$eq": [ "$rating", "high" ] }, 1, 0 ]
}
},
"medium_ratings": {
"$sum": {
"$cond": [ { "$eq": [ "$rating", "medium" ] }, 1, 0 ]
}
},
"low_ratings": {
"$sum": {
"$cond": [ { "$eq": [ "$rating", "low" ] }, 1, 0 ]
}
},
"none_ratings": {
"$sum": {
"$cond": [ { "$eq": [ "$rating", "none" ] }, 1, 0 ]
}
}
}
}
])
示例输出
/* 1 */
{
"_id" : "Motorola",
"total" : 2,
"high_ratings" : 1,
"medium_ratings" : 0,
"low_ratings" : 0,
"none_ratings" : 1
}
/* 2 */
{
"_id" : "Asus",
"total" : 2,
"high_ratings" : 1,
"medium_ratings" : 1,
"low_ratings" : 0,
"none_ratings" : 0
}