使用 python 有条件地将不同的值添加到数组

Conditional addition of different values to an array using python

如果x < 50我想加10,如果50 <= x < 100加20,如果100 <= x < 150加30,150 <= x < 200加40。我怎么解决这个问题?在我的数组 arr 中,我有 300 多个数据元素。预先感谢您的友好合作。

arr =[10,20,30,40,50,60,70,80,90,100,120,130,140,150,160,170,180,190,200]

好像有点像家庭作业? 我明确地拆分了您需要进行的修改,以便您很容易看到它在做什么。请注意:我没有输入你的所有规则,只是输入了一些,所以你可以看看如何扩展它。

x=[10,20,30,40,50,60,70,80,90,100,120,130,140,150,160,170,180,190,200]
for value in x:
     oldvalue = value
     if value  < 50:
         value += 10
     elif value < 100:
         value += 20
     else:
         value += 30
     print("%i => %i" % (oldvalue, value))

这会打印:

10 => 20
20 => 30
30 => 40
40 => 50
50 => 70
60 => 80
70 => 90
80 => 100
....

使用熊猫也很容易。感谢本网站的帮助。

 import matplotlib.pyplot as plt
 import numpy as np 
 import pandas as pd
 import math
 import xlwt
 import xlrd


 df_180 = pd.read_csv('Image_146.pft', error_bad_lines=False,header=19)
 df_181 = pd.read_csv('Image_T181.pft', error_bad_lines=False,header=20)

 df_182 = pd.read_csv('Image_T182.pft', error_bad_lines=False, header=20)
 df_183 = pd.read_csv('Image_T183.pft', error_bad_lines=False, header=20)


 x_180=df_180.iloc[:,7]
 y_180=df_180.iloc[:,8]

 x_181=df_181.iloc[:,7]
 y_181=df_181.iloc[:,8]

 x_182=df_182.iloc[:,7]
 y_182=df_182.iloc[:,8]

 x_183=df_183.iloc[:,7]
 y_183=df_183.iloc[:,8]

 plt.style.use('ggplot')

fn ="C:\Users\M15-1478\Desktop\python\Scatter plot.xlsx"
sheetname = 'T181'
df = pd.read_excel(fn, sheetname=sheetname, skiprows=47,    parse_cols='B:C').dropna(how='any')
df.ix[df.eval('0 <= GrvX <= 500'), 'GrvX'] -= 161
df.ix[df.eval('500 < GrvX <= 1000'), 'GrvX'] -= 114
df.ix[df.eval('1000 < GrvX < 1500'), 'GrvX'] -= 75
df.ix[df.eval('1500 < GrvX < 2000'), 'GrvX'] -= 15
df.ix[df.eval('2000 < GrvX < 2600'), 'GrvX'] += 30
df.ix[df.eval('2600 < GrvX < 2900'), 'GrvX'] += 70

# customize Y-values
df.ix[df.eval('0 <= GrvY <= 1000'), 'GrvY'] += 30

df.plot(x='GrvX', y='GrvY',  linestyle='no line', marker="o", label=sheetname)
plt.plot(x,y,"gs")

plt.xlabel("x (micron)", size ="18",color ="m")
plt.ylabel("y (micron)", size ="18",color ="m")
plt.title("scatter plot after matching", size ="18",color ="m")
plt.show()