具有顺序解释变量的逻辑回归

Logistic regression with ordinal explanatory variable

我有一组数据,我想在其中对二元结果变量(治疗)的几率进行逻辑回归建模,并​​将阶段作为有序解释变量(0,1,2,3,4)。 Hba1c 是一个连续变量。

我的class说法正确吗?

如何计算序数变量每个水平的优势比?

PROC LOGISTIC data=new;
class EyeID Therapy (ref ="0") Stage (param = ordinal) Gender (ref="M") Ethnicity (ref="C")/ param = ref;
model Therapy = Stage Gender age A1c Ethnicity;
oddsratio Stage;
run; 

这是输出:

Odds Ratio Estimates and Wald Confidence Intervals
Odds Ratio  Estimate    95% Confidence Limits
Stage 1 vs 0    0.873   0.547   1.394
Stage 2 vs 0    2.434   0.895   6.620
Stage 3 vs 0    0.915   0.431   1.941
Stage 4 vs 0    0.356   0.132   0.961
Stage 2 vs 1    2.788   0.980   7.935
Stage 3 vs 1    1.048   0.465   2.360
Stage 4 vs 1    0.408   0.144   1.156
Stage 3 vs 2    0.376   0.113   1.249
Stage 4 vs 2    0.146   0.038   0.567
Stage 4 vs 3    0.389   0.117   1.288

如果我将 Stage 报告为序数变量,那么我这样创建 table 是否正确?

Stage 1 vs 0    0.873   0.547   1.394
Stage 2 vs 1    2.788   0.98    7.935
Stage 3 vs 2    0.376   0.113   1.249
Stage 4 vs 3    0.389   0.117   1.288

我不应该这样举报,对吧?这是如果阶段是绝对的?

Stage 1 vs 0    0.873   0.547   1.394
Stage 2 vs 0    2.434   0.895   6.62
Stage 3 vs 0    0.915   0.431   1.941
Stage 4 vs 0    0.356   0.132   0.961

我认为您不需要 Therapy 声明 class。

没有示例数据,我无法对此进行测试,但我的第一遍应该是这样写的。

proc logistic data=test;
class PVDStage (param = ordinal);
model Therapy(ref = '0') = PVDStage hba1c;
ODDSRATIO PVDStage;
run;

如果你能提供一些示例数据,我会修改我的答案以确保它有效。