CountVectorizer 不打印词汇表
CountVectorizer does not print vocabulary
我已经安装了 python 2.7、numpy 1.9.0、scipy 0.15.1 和 scikit-learn 0.15.2。
现在,当我在 python 中执行以下操作时:
train_set = ("The sky is blue.", "The sun is bright.")
test_set = ("The sun in the sky is bright.",
"We can see the shining sun, the bright sun.")
from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer()
print vectorizer
CountVectorizer(analyzer=u'word', binary=False, charset=None,
charset_error=None, decode_error=u'strict',
dtype=<type 'numpy.int64'>, encoding=u'utf-8', input=u'content',
lowercase=True, max_df=1.0, max_features=None, min_df=1,
ngram_range=(1, 1), preprocessor=None, stop_words=None,
strip_accents=None, token_pattern=u'(?u)\b\w\w+\b',
tokenizer=None, vocabulary=None)
vectorizer.fit_transform(train_set)
print vectorizer.vocabulary
None.
实际上它应该打印以下内容:
CountVectorizer(analyzer__min_n=1,
analyzer__stop_words=set(['all', 'six', 'less', 'being', 'indeed', 'over',
'move', 'anyway', 'four', 'not', 'own', 'through', 'yourselves', (...) --->
For count vectorizer
{'blue': 0, 'sun': 1, 'bright': 2, 'sky': 3} ---> for vocabulary
以上代码来自博客:
http://blog.christianperone.com/?p=1589
你能帮我看看为什么会出现这样的错误吗?由于词汇表没有正确索引,我无法继续理解 TF-IDF 的概念。我是 python 的新手,如有任何帮助,我们将不胜感激。
圆弧
你少了一个下划线,试试这个:
from sklearn.feature_extraction.text import CountVectorizer
train_set = ("The sky is blue.", "The sun is bright.")
test_set = ("The sun in the sky is bright.",
"We can see the shining sun, the bright sun.")
vectorizer = CountVectorizer(stop_words='english')
document_term_matrix = vectorizer.fit_transform(train_set)
print vectorizer.vocabulary_
# {u'blue': 0, u'sun': 3, u'bright': 1, u'sky': 2}
如果你使用ipythonshell,你可以使用tab补全,你可以更容易的找到对象的方法和属性。
尝试使用 vectorizer.get_feature_names()
方法。它按照在 document_term_matrix
.
中出现的顺序给出列名
from sklearn.feature_extraction.text import CountVectorizer
train_set = ("The sky is blue.", "The sun is bright.")
test_set = ("The sun in the sky is bright.",
"We can see the shining sun, the bright sun.")
vectorizer = CountVectorizer(stop_words='english')
document_term_matrix = vectorizer.fit_transform(train_set)
vectorizer.get_feature_names()
#> ['blue', 'bright', 'sky', 'sun']
我已经安装了 python 2.7、numpy 1.9.0、scipy 0.15.1 和 scikit-learn 0.15.2。 现在,当我在 python 中执行以下操作时:
train_set = ("The sky is blue.", "The sun is bright.")
test_set = ("The sun in the sky is bright.",
"We can see the shining sun, the bright sun.")
from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer()
print vectorizer
CountVectorizer(analyzer=u'word', binary=False, charset=None,
charset_error=None, decode_error=u'strict',
dtype=<type 'numpy.int64'>, encoding=u'utf-8', input=u'content',
lowercase=True, max_df=1.0, max_features=None, min_df=1,
ngram_range=(1, 1), preprocessor=None, stop_words=None,
strip_accents=None, token_pattern=u'(?u)\b\w\w+\b',
tokenizer=None, vocabulary=None)
vectorizer.fit_transform(train_set)
print vectorizer.vocabulary
None.
实际上它应该打印以下内容:
CountVectorizer(analyzer__min_n=1,
analyzer__stop_words=set(['all', 'six', 'less', 'being', 'indeed', 'over',
'move', 'anyway', 'four', 'not', 'own', 'through', 'yourselves', (...) --->
For count vectorizer
{'blue': 0, 'sun': 1, 'bright': 2, 'sky': 3} ---> for vocabulary
以上代码来自博客: http://blog.christianperone.com/?p=1589
你能帮我看看为什么会出现这样的错误吗?由于词汇表没有正确索引,我无法继续理解 TF-IDF 的概念。我是 python 的新手,如有任何帮助,我们将不胜感激。
圆弧
你少了一个下划线,试试这个:
from sklearn.feature_extraction.text import CountVectorizer
train_set = ("The sky is blue.", "The sun is bright.")
test_set = ("The sun in the sky is bright.",
"We can see the shining sun, the bright sun.")
vectorizer = CountVectorizer(stop_words='english')
document_term_matrix = vectorizer.fit_transform(train_set)
print vectorizer.vocabulary_
# {u'blue': 0, u'sun': 3, u'bright': 1, u'sky': 2}
如果你使用ipythonshell,你可以使用tab补全,你可以更容易的找到对象的方法和属性。
尝试使用 vectorizer.get_feature_names()
方法。它按照在 document_term_matrix
.
from sklearn.feature_extraction.text import CountVectorizer
train_set = ("The sky is blue.", "The sun is bright.")
test_set = ("The sun in the sky is bright.",
"We can see the shining sun, the bright sun.")
vectorizer = CountVectorizer(stop_words='english')
document_term_matrix = vectorizer.fit_transform(train_set)
vectorizer.get_feature_names()
#> ['blue', 'bright', 'sky', 'sun']