Java斐波那契数列快速方法
Java Fibonacci Sequence fast method
我需要一个任务,为我在 Java 的独立项目寻找斐波那契数列。以下是查找方法。
private static long getFibonacci(int n) {
switch (n) {
case 0:
return 0;
case 1:
return 1;
default:
return (getFibonacci(n-1)+getFibonacci(n-2));
}
}
private static long getFibonacciSum(int n) {
long result = 0;
while(n >= 0) {
result += getFibonacci(n);
n--;
}
return result;
}
private static boolean isInFibonacci(long n) {
long a = 0, b = 1, c = 0;
while (c < n) {
c = a + b;
a = b;
b = c;
}
return c == n;
}
这里是主要方法:
long key = getFibonacciSum(n);
System.out.println("Sum of all Fibonacci Numbers until Fibonacci[n]: "+key);
System.out.println(getFibonacci(n)+" is Fibonacci[n]");
System.out.println("Is n2 in Fibonacci Sequence ?: "+isInFibonacci(n2));
代码已完全完成并正在运行。但是,如果 n 或 n2 将超过正常值(Fib.Seq. 中的第 50 个数字)?代码将被运行。有什么建议吗?
50 或略低于 50 是直接递归实现的极限。如果你想比这更高,你可以切换到迭代或动态编程 (DP) 方法。我建议从中了解这些:https://www.javacodegeeks.com/2014/02/dynamic-programming-introduction.html。并且不要忘记在 David 的评论中查看解决方案,真正有效。 links 显示了如何使用 DP 方法即时计算 n = 500000
。 link 还解释了 "memoization" 的概念,即通过存储中间(但稍后可重新调用)结果来加速计算。
这种求解方法称为动态规划
- 在这个方法中我们记住了之前的结果
所以当递归发生时,cpu 不需要做任何工作来一次又一次地重新计算相同的值
class fibonacci
{
static int fib(int n)
{
/* Declare an array to store Fibonacci numbers. */
int f[] = new int[n+1];
int i;
/* 0th and 1st number of the series are 0 and 1*/
f[0] = 0;
f[1] = 1;
for (i = 2; i <= n; i++)
{
/* Add the previous 2 numbers in the series
and store it */
f[i] = f[i-1] + f[i-2];
}
return f[n];
}
public static void main (String args[])
{
int n = 9;
System.out.println(fib(n));
}
}
是的,您可以做的一项改进是 getFibonacciSum()
:您可以做与 isInFibonacci
正在做并一次获得总和,例如:
private static boolean getFibonacciSum(long n) {
long a = 0, b = 1, c = 0, sum = 0;
while (c < n) {
c = a + b;
a = b;
sum += b;
b = c;
}
sum += c;
return sum;
}
有一种方法可以使用比奈公式
即时计算斐波那契数列
算法:
function fib(n):
root5 = squareroot(5)
gr = (1 + root5) / 2
igr = 1 - gr
value = (power(gr, n) - power(igr, n)) / root5
// round it to the closest integer since floating
// point arithmetic cannot be trusted to give
// perfect integer answers.
return floor(value + 0.5)
执行此操作后,您需要了解您正在使用的编程语言及其行为方式。这可能 return 浮点十进制类型,而可能需要整数。
The complexity of this solution is O(1).
public static long getFib(final int index) {
long a=0,b=0,total=0;
for(int i=0;i<= index;i++) {
if(i==0) {
a=0;
total=a+b;
}else if(i==1) {
b=1;
total=a+b;
}
else if(i%2==0) {
total = a+b;
a=total;
}else {
total = a+b;
b=total;
}
}
return total;
}
好吧,我的解决方案是使用 Map 和 { { F(2k) = F(k)[2F(k+1)−F(k)] }, { F(2k+1) = F (k+1)^2+F(k)^2 } }。 (公式来源:https://www.nayuki.io/page/fast-fibonacci-algorithms)
也可以使用列表而不是地图来实现它,但这只是重新发明轮子。
使用Iteration解决方案时,我们不用担心运行内存不足,但是获取fib(1000000)需要很多时间,例如。在这个解决方案中,对于非常非常非常大的输入(比如 100000 亿,idk),我们可能 运行 内存不足,但它要快得多。
public BigInteger fib(BigInteger n) {
if (n.equals(BigInteger.ZERO))
return BigInteger.ZERO;
if (n.equals(BigInteger.ONE) || n.equals(BigInteger.valueOf(2)))
return BigInteger.ONE;
BigInteger index = n;
//we could have 2 Lists instead of a map
Map<BigInteger,BigInteger> termsToCalculate = new TreeMap<BigInteger,BigInteger>();
//add every index needed to calculate index n
populateMapWhitTerms(termsToCalculate, index);
termsToCalculate.put(n,null); //finally add n to map
Iterator<Map.Entry<BigInteger, BigInteger>> it = termsToCalculate.entrySet().iterator();//it
it.next(); //it = key number 1, contains fib(1);
it.next(); //it = key number 2, contains fib(2);
//map is ordered
while (it.hasNext()) {
Map.Entry<BigInteger, BigInteger> pair = (Entry<BigInteger, BigInteger>)it.next();//first it = key number 3
index = (BigInteger) pair.getKey();
if(index.remainder(BigInteger.valueOf(2)).equals(BigInteger.ZERO)) {
//index is divisible by 2
//F(2k) = F(k)[2F(k+1)−F(k)]
pair.setValue(termsToCalculate.get(index.divide(BigInteger.valueOf(2))).multiply(
(((BigInteger.valueOf(2)).multiply(
termsToCalculate.get(index.divide(BigInteger.valueOf(2)).add(BigInteger.ONE)))).subtract(
termsToCalculate.get(index.divide(BigInteger.valueOf(2)))))));
}
else {
//index is odd
//F(2k+1) = F(k+1)^2+F(k)^2
pair.setValue((termsToCalculate.get(index.divide(BigInteger.valueOf(2)).add(BigInteger.ONE)).multiply(
termsToCalculate.get(index.divide(BigInteger.valueOf(2)).add(BigInteger.ONE)))).add(
(termsToCalculate.get(index.divide(BigInteger.valueOf(2))).multiply(
termsToCalculate.get(index.divide(BigInteger.valueOf(2))))))
);
}
}
// fib(n) was calculated in the while loop
return termsToCalculate.get(n);
}
private void populateMapWhitTerms(Map<BigInteger, BigInteger> termsToCalculate, BigInteger index) {
if (index.equals(BigInteger.ONE)) { //stop
termsToCalculate.put(BigInteger.ONE, BigInteger.ONE);
return;
} else if(index.equals(BigInteger.valueOf(2))){
termsToCalculate.put(BigInteger.valueOf(2), BigInteger.ONE);
return;
} else if(index.remainder(BigInteger.valueOf(2)).equals(BigInteger.ZERO)) {
// index is divisible by 2
// FORMUMA: F(2k) = F(k)[2F(k+1)−F(k)]
// add F(k) key to termsToCalculate (the key is replaced if it is already there, we are working with a map here)
termsToCalculate.put(index.divide(BigInteger.valueOf(2)), null);
populateMapWhitTerms(termsToCalculate, index.divide(BigInteger.valueOf(2)));
// add F(k+1) to termsToCalculate
termsToCalculate.put(index.divide(BigInteger.valueOf(2)).add(BigInteger.ONE), null);
populateMapWhitTerms(termsToCalculate, index.divide(BigInteger.valueOf(2)).add(BigInteger.ONE));
} else {
// index is odd
// FORMULA: F(2k+1) = F(k+1)^2+F(k)^2
// add F(k+1) to termsToCalculate
termsToCalculate.put(((index.subtract(BigInteger.ONE)).divide(BigInteger.valueOf(2)).add(BigInteger.ONE)),null);
populateMapWhitTerms(termsToCalculate,((index.subtract(BigInteger.ONE)).divide(BigInteger.valueOf(2)).add(BigInteger.ONE)));
// add F(k) to termsToCalculate
termsToCalculate.put((index.subtract(BigInteger.ONE)).divide(BigInteger.valueOf(2)), null);
populateMapWhitTerms(termsToCalculate, (index.subtract(BigInteger.ONE)).divide(BigInteger.valueOf(2)));
}
}
我检查了所有解决方案,对我来说,最快的方法是使用流,并且可以轻松修改此代码以收集所有斐波那契数。
public static Long fibonaciN(long n){
return Stream.iterate(new long[]{0, 1}, a -> new long[]{a[1], a[0] + a[1]})
.limit(n)
.map(a->a[0])
.max(Long::compareTo)
.orElseThrow();
}
我需要一个任务,为我在 Java 的独立项目寻找斐波那契数列。以下是查找方法。
private static long getFibonacci(int n) {
switch (n) {
case 0:
return 0;
case 1:
return 1;
default:
return (getFibonacci(n-1)+getFibonacci(n-2));
}
}
private static long getFibonacciSum(int n) {
long result = 0;
while(n >= 0) {
result += getFibonacci(n);
n--;
}
return result;
}
private static boolean isInFibonacci(long n) {
long a = 0, b = 1, c = 0;
while (c < n) {
c = a + b;
a = b;
b = c;
}
return c == n;
}
这里是主要方法:
long key = getFibonacciSum(n);
System.out.println("Sum of all Fibonacci Numbers until Fibonacci[n]: "+key);
System.out.println(getFibonacci(n)+" is Fibonacci[n]");
System.out.println("Is n2 in Fibonacci Sequence ?: "+isInFibonacci(n2));
代码已完全完成并正在运行。但是,如果 n 或 n2 将超过正常值(Fib.Seq. 中的第 50 个数字)?代码将被运行。有什么建议吗?
50 或略低于 50 是直接递归实现的极限。如果你想比这更高,你可以切换到迭代或动态编程 (DP) 方法。我建议从中了解这些:https://www.javacodegeeks.com/2014/02/dynamic-programming-introduction.html。并且不要忘记在 David 的评论中查看解决方案,真正有效。 links 显示了如何使用 DP 方法即时计算 n = 500000
。 link 还解释了 "memoization" 的概念,即通过存储中间(但稍后可重新调用)结果来加速计算。
这种求解方法称为动态规划
- 在这个方法中我们记住了之前的结果
所以当递归发生时,cpu 不需要做任何工作来一次又一次地重新计算相同的值
class fibonacci { static int fib(int n) { /* Declare an array to store Fibonacci numbers. */ int f[] = new int[n+1]; int i; /* 0th and 1st number of the series are 0 and 1*/ f[0] = 0; f[1] = 1; for (i = 2; i <= n; i++) { /* Add the previous 2 numbers in the series and store it */ f[i] = f[i-1] + f[i-2]; } return f[n]; } public static void main (String args[]) { int n = 9; System.out.println(fib(n)); } }
是的,您可以做的一项改进是 getFibonacciSum()
:您可以做与 isInFibonacci
正在做并一次获得总和,例如:
private static boolean getFibonacciSum(long n) {
long a = 0, b = 1, c = 0, sum = 0;
while (c < n) {
c = a + b;
a = b;
sum += b;
b = c;
}
sum += c;
return sum;
}
有一种方法可以使用比奈公式
即时计算斐波那契数列算法:
function fib(n):
root5 = squareroot(5)
gr = (1 + root5) / 2
igr = 1 - gr
value = (power(gr, n) - power(igr, n)) / root5
// round it to the closest integer since floating
// point arithmetic cannot be trusted to give
// perfect integer answers.
return floor(value + 0.5)
执行此操作后,您需要了解您正在使用的编程语言及其行为方式。这可能 return 浮点十进制类型,而可能需要整数。
The complexity of this solution is O(1).
public static long getFib(final int index) {
long a=0,b=0,total=0;
for(int i=0;i<= index;i++) {
if(i==0) {
a=0;
total=a+b;
}else if(i==1) {
b=1;
total=a+b;
}
else if(i%2==0) {
total = a+b;
a=total;
}else {
total = a+b;
b=total;
}
}
return total;
}
好吧,我的解决方案是使用 Map 和 { { F(2k) = F(k)[2F(k+1)−F(k)] }, { F(2k+1) = F (k+1)^2+F(k)^2 } }。 (公式来源:https://www.nayuki.io/page/fast-fibonacci-algorithms)
也可以使用列表而不是地图来实现它,但这只是重新发明轮子。
使用Iteration解决方案时,我们不用担心运行内存不足,但是获取fib(1000000)需要很多时间,例如。在这个解决方案中,对于非常非常非常大的输入(比如 100000 亿,idk),我们可能 运行 内存不足,但它要快得多。
public BigInteger fib(BigInteger n) {
if (n.equals(BigInteger.ZERO))
return BigInteger.ZERO;
if (n.equals(BigInteger.ONE) || n.equals(BigInteger.valueOf(2)))
return BigInteger.ONE;
BigInteger index = n;
//we could have 2 Lists instead of a map
Map<BigInteger,BigInteger> termsToCalculate = new TreeMap<BigInteger,BigInteger>();
//add every index needed to calculate index n
populateMapWhitTerms(termsToCalculate, index);
termsToCalculate.put(n,null); //finally add n to map
Iterator<Map.Entry<BigInteger, BigInteger>> it = termsToCalculate.entrySet().iterator();//it
it.next(); //it = key number 1, contains fib(1);
it.next(); //it = key number 2, contains fib(2);
//map is ordered
while (it.hasNext()) {
Map.Entry<BigInteger, BigInteger> pair = (Entry<BigInteger, BigInteger>)it.next();//first it = key number 3
index = (BigInteger) pair.getKey();
if(index.remainder(BigInteger.valueOf(2)).equals(BigInteger.ZERO)) {
//index is divisible by 2
//F(2k) = F(k)[2F(k+1)−F(k)]
pair.setValue(termsToCalculate.get(index.divide(BigInteger.valueOf(2))).multiply(
(((BigInteger.valueOf(2)).multiply(
termsToCalculate.get(index.divide(BigInteger.valueOf(2)).add(BigInteger.ONE)))).subtract(
termsToCalculate.get(index.divide(BigInteger.valueOf(2)))))));
}
else {
//index is odd
//F(2k+1) = F(k+1)^2+F(k)^2
pair.setValue((termsToCalculate.get(index.divide(BigInteger.valueOf(2)).add(BigInteger.ONE)).multiply(
termsToCalculate.get(index.divide(BigInteger.valueOf(2)).add(BigInteger.ONE)))).add(
(termsToCalculate.get(index.divide(BigInteger.valueOf(2))).multiply(
termsToCalculate.get(index.divide(BigInteger.valueOf(2))))))
);
}
}
// fib(n) was calculated in the while loop
return termsToCalculate.get(n);
}
private void populateMapWhitTerms(Map<BigInteger, BigInteger> termsToCalculate, BigInteger index) {
if (index.equals(BigInteger.ONE)) { //stop
termsToCalculate.put(BigInteger.ONE, BigInteger.ONE);
return;
} else if(index.equals(BigInteger.valueOf(2))){
termsToCalculate.put(BigInteger.valueOf(2), BigInteger.ONE);
return;
} else if(index.remainder(BigInteger.valueOf(2)).equals(BigInteger.ZERO)) {
// index is divisible by 2
// FORMUMA: F(2k) = F(k)[2F(k+1)−F(k)]
// add F(k) key to termsToCalculate (the key is replaced if it is already there, we are working with a map here)
termsToCalculate.put(index.divide(BigInteger.valueOf(2)), null);
populateMapWhitTerms(termsToCalculate, index.divide(BigInteger.valueOf(2)));
// add F(k+1) to termsToCalculate
termsToCalculate.put(index.divide(BigInteger.valueOf(2)).add(BigInteger.ONE), null);
populateMapWhitTerms(termsToCalculate, index.divide(BigInteger.valueOf(2)).add(BigInteger.ONE));
} else {
// index is odd
// FORMULA: F(2k+1) = F(k+1)^2+F(k)^2
// add F(k+1) to termsToCalculate
termsToCalculate.put(((index.subtract(BigInteger.ONE)).divide(BigInteger.valueOf(2)).add(BigInteger.ONE)),null);
populateMapWhitTerms(termsToCalculate,((index.subtract(BigInteger.ONE)).divide(BigInteger.valueOf(2)).add(BigInteger.ONE)));
// add F(k) to termsToCalculate
termsToCalculate.put((index.subtract(BigInteger.ONE)).divide(BigInteger.valueOf(2)), null);
populateMapWhitTerms(termsToCalculate, (index.subtract(BigInteger.ONE)).divide(BigInteger.valueOf(2)));
}
}
我检查了所有解决方案,对我来说,最快的方法是使用流,并且可以轻松修改此代码以收集所有斐波那契数。
public static Long fibonaciN(long n){
return Stream.iterate(new long[]{0, 1}, a -> new long[]{a[1], a[0] + a[1]})
.limit(n)
.map(a->a[0])
.max(Long::compareTo)
.orElseThrow();
}