Caffe+GPU+Opencv3.1+Python3.5+Anaconda:fatal error: Python.h: No such file or directory
Caffe+GPU+Opencv3.1+Python3.5+Anaconda:fatal error: Python.h: No such file or directory
简单地说,我最近想在我的项目中使用 Caffe。
我的OS是Ubuntu14.04,有Opencv3.1+Python3.5+Anaconda+GPU
我已经全部通过了:
make all
make pycaffe
make test
make runtest
但是什么时候可以尝试make pycaffe
,却无法通过:
Python.h: No such file or directory
这是我的 'makefile.config'
,我确定 'Python.h'
已经在路径中,这让我很困惑。
USE_CUDNN := 1
OPENCV_VERSION := 3
ANACONDA_HOME := $(HOME)/anaconda3
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
$(ANACONDA_HOME)/include/python3.5m \
$(ANACONDA_HOME)/lib/python3.5/site-packages/numpy/core/include \
PYTHON_LIB := $(ANACONDA_HOME)/lib
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
USE_PKG_CONFIG := 1
PYTHON_LIBRARIES := boost_python3 python3.5m
PYTHON_INCLUDE := /usr/include/python3.5m \
/usr/lib/python3.5/dist-packages/numpy/core/include
因为我用的是Python3.5,所以我取消了下面的注释:
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
PYTHON_LIB := /usr/lib
非常感谢有人能提供帮助,
您对 PYTHON_INCLUDE
有两个定义:您需要决定是选择 "python3" 风味还是 "anaconda" 风味...
你的 python.h
文件在哪里?试试 shell
find / -name "Python.h" -type f
看看它到底在哪里。然后在 makefile.config
中为 PYTHON_INCLUDE
选择正确的设置
在Ubuntu14.04上配置caffe差不多花了(腰)一周,太费时间的原因是我用的是最新版的OpencvPython和anaconda。在这里我想分享一下我的经验。
Makefile.config
# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1
# Uncomment if you’re using OpenCV 3
OPENCV_VERSION := 3
# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_50,code=compute_50
# BLAS choice: atlas for ATLAS (default)
BLAS := atlas
# We need to be able to find Python.h and numpy/arrayobject.h.
ANACONDA_HOME := $(HOME)/anaconda3
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
$(ANACONDA_HOME)/include/python3.5m \
$(ANACONDA_HOME)/lib/python3.5/site-packages/numpy/core/include \
# Uncomment to use Python 3 (default is Python 2)
PYTHON_LIBRARIES := boost_python3 python3.5m
# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := $(ANACONDA_HOME)/lib
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
# The ID of the GPU that ‘make runtest’ will use to run unit tests.
TEST_GPUID := 0
# enable pretty build (comment to see full commands)
Q ?= @
/.bashrc
#Caffemake
export PYTHONPATH=~/caffe/python/:$PYTHONPATH
#Opencv
export LD_LIBRARY_PATH=/home/kaku/anaconda3/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=”/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH”
备注:
1. library must be installed:
libboost-all-dev, although in some tutorial mentioned must install libboost1.55-all-dev.
protobuf-cpp-3.0.0-beta-2.zip or upper one
protobuf-python-3.0.0-beta-2.zip or upper one
http://blog.csdn.net/lien0906/article/details/51784191
https://github.com/google/protobuf/issues/1276
其他调试:详见my own blog.
在遇到同样的问题并使用 Gentoo 系统后,我尝试了其他方法。我通过 Gentoo 插槽同时安装了 2 python 个实例:
ares ~ # eselect python list
Available Python interpreters, in order of preference:
[1] python3.4
[2] python2.7
我的默认是2.7,所以我尝试切换到3.4。问题是它需要对 2 个文件进行一些更改。
我注意到 2.7 的类似更改根本不起作用,路径是正确的,但底层有问题...
Makefile.config 文件我更改为使用 Python 3 (3.4) :
PYTHON_LIBRARIES := boost_python3 python3.4m
PYTHON_INCLUDE := /usr/include/python3.4m \
/usr/lib64/python3.4/site-packages/numpy/core/include
不过,当您只是更改它时,只要 CMake 仍然指向 2.7,它就不会起作用。我检查了一下:
mkdir build; cd build;cmake ..;
输出为:
-- Python:
-- Interpreter : /usr/bin/python2.7 (ver. 2.7.12)
-- Libraries : /usr/lib64/libpython2.7.so (ver 2.7.12)
-- NumPy : /usr/lib64/python2.7/site-packages/numpy/core/include (ver 1.12.1)
所以我在 CMakeLists.txt 文件中更改了这一行:
set(python_version "2" CACHE STRING "Specify which Python version to use")
至(将值 2 更改为 3):
set(python_version "3" CACHE STRING "Specify which Python version to use")
并再次执行 cmake(清理后)并最终得到:
-- Python:
-- Interpreter : /usr/bin/python3 (ver. 3.4.5)
-- Libraries : /usr/lib64/libpython3.4m.so (ver 3.4.5)
-- NumPy : /usr/lib64/python3.4/site-packages/numpy/core/include (ver 1.12.1)
现在 make -j8 命令顺利完成。我注意到我在编译 (-j8) 时使用了多线程选项,因为我在一些论坛上发现建议只使用 -j1(单线程),所以我不是这种情况。
我的 Make.config 中有以下内容:
PYTHON_LIB := /usr/lib
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
以及我的 ~/.bashrc 中的以下内容:
export PYTHONPATH=$HOME/caffe/python
export CAFFE_ROOT=$HOME/caffe
您必须 运行 在 cd $CAFFE_ROOT 中执行以下操作:
让所有
制作pycaffe
进行测试
进行运行测试
我的设置是在 CentOS 和 Python 2.7 中,但它应该是类似的想法。
[jalal@ivcgpu1 caffe]$ lsb_release -a
LSB Version: :core-4.1-amd64:core-4.1-noarch:cxx-4.1-amd64:cxx-4.1-noarch:desktop-4.1-amd64:desktop-4.1-noarch:languages-4.1-amd64:languages-4.1-noarch:printing-4.1-amd64:printing-4.1-noarch
Distributor ID: CentOS
Description: CentOS Linux release 7.4.1708 (Core)
Release: 7.4.1708
Codename: Core
[jalal@ivcgpu1 caffe]$ uname -a
Linux ivcgpu1.bu.edu 3.10.0-514.26.2.el7.x86_64 #1 SMP Tue Jul 4 15:04:05 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux
简单地说,我最近想在我的项目中使用 Caffe。 我的OS是Ubuntu14.04,有Opencv3.1+Python3.5+Anaconda+GPU 我已经全部通过了:
make all
make pycaffe
make test
make runtest
但是什么时候可以尝试make pycaffe
,却无法通过:
Python.h: No such file or directory
这是我的 'makefile.config'
,我确定 'Python.h'
已经在路径中,这让我很困惑。
USE_CUDNN := 1
OPENCV_VERSION := 3
ANACONDA_HOME := $(HOME)/anaconda3
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
$(ANACONDA_HOME)/include/python3.5m \
$(ANACONDA_HOME)/lib/python3.5/site-packages/numpy/core/include \
PYTHON_LIB := $(ANACONDA_HOME)/lib
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
USE_PKG_CONFIG := 1
PYTHON_LIBRARIES := boost_python3 python3.5m
PYTHON_INCLUDE := /usr/include/python3.5m \
/usr/lib/python3.5/dist-packages/numpy/core/include
因为我用的是Python3.5,所以我取消了下面的注释:
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
PYTHON_LIB := /usr/lib
非常感谢有人能提供帮助,
您对 PYTHON_INCLUDE
有两个定义:您需要决定是选择 "python3" 风味还是 "anaconda" 风味...
你的 python.h
文件在哪里?试试 shell
find / -name "Python.h" -type f
看看它到底在哪里。然后在 makefile.config
中为PYTHON_INCLUDE
选择正确的设置
在Ubuntu14.04上配置caffe差不多花了(腰)一周,太费时间的原因是我用的是最新版的OpencvPython和anaconda。在这里我想分享一下我的经验。
Makefile.config
# cuDNN acceleration switch (uncomment to build with cuDNN). USE_CUDNN := 1 # Uncomment if you’re using OpenCV 3 OPENCV_VERSION := 3 # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda # CUDA architecture setting: going with all of them. # For CUDA < 6.0, comment the *_50 lines for compatibility. CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \ -gencode arch=compute_20,code=sm_21 \ -gencode arch=compute_30,code=sm_30 \ -gencode arch=compute_35,code=sm_35 \ -gencode arch=compute_50,code=sm_50 \ -gencode arch=compute_50,code=compute_50 # BLAS choice: atlas for ATLAS (default) BLAS := atlas # We need to be able to find Python.h and numpy/arrayobject.h. ANACONDA_HOME := $(HOME)/anaconda3 PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ $(ANACONDA_HOME)/include/python3.5m \ $(ANACONDA_HOME)/lib/python3.5/site-packages/numpy/core/include \ # Uncomment to use Python 3 (default is Python 2) PYTHON_LIBRARIES := boost_python3 python3.5m # We need to be able to find libpythonX.X.so or .dylib. PYTHON_LIB := $(ANACONDA_HOME)/lib # Whatever else you find you need goes here. INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib # N.B. both build and distribute dirs are cleared on `make clean` BUILD_DIR := build DISTRIBUTE_DIR := distribute # The ID of the GPU that ‘make runtest’ will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) Q ?= @
/.bashrc
#Caffemake export PYTHONPATH=~/caffe/python/:$PYTHONPATH #Opencv export LD_LIBRARY_PATH=/home/kaku/anaconda3/lib:$LD_LIBRARY_PATH export LD_LIBRARY_PATH=”/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH”
备注:
1. library must be installed: libboost-all-dev, although in some tutorial mentioned must install libboost1.55-all-dev. protobuf-cpp-3.0.0-beta-2.zip or upper one protobuf-python-3.0.0-beta-2.zip or upper one http://blog.csdn.net/lien0906/article/details/51784191 https://github.com/google/protobuf/issues/1276
其他调试:详见my own blog.
在遇到同样的问题并使用 Gentoo 系统后,我尝试了其他方法。我通过 Gentoo 插槽同时安装了 2 python 个实例:
ares ~ # eselect python list
Available Python interpreters, in order of preference:
[1] python3.4
[2] python2.7
我的默认是2.7,所以我尝试切换到3.4。问题是它需要对 2 个文件进行一些更改。
我注意到 2.7 的类似更改根本不起作用,路径是正确的,但底层有问题...
Makefile.config 文件我更改为使用 Python 3 (3.4) :
PYTHON_LIBRARIES := boost_python3 python3.4m
PYTHON_INCLUDE := /usr/include/python3.4m \
/usr/lib64/python3.4/site-packages/numpy/core/include
不过,当您只是更改它时,只要 CMake 仍然指向 2.7,它就不会起作用。我检查了一下:
mkdir build; cd build;cmake ..;
输出为:
-- Python:
-- Interpreter : /usr/bin/python2.7 (ver. 2.7.12)
-- Libraries : /usr/lib64/libpython2.7.so (ver 2.7.12)
-- NumPy : /usr/lib64/python2.7/site-packages/numpy/core/include (ver 1.12.1)
所以我在 CMakeLists.txt 文件中更改了这一行:
set(python_version "2" CACHE STRING "Specify which Python version to use")
至(将值 2 更改为 3):
set(python_version "3" CACHE STRING "Specify which Python version to use")
并再次执行 cmake(清理后)并最终得到:
-- Python:
-- Interpreter : /usr/bin/python3 (ver. 3.4.5)
-- Libraries : /usr/lib64/libpython3.4m.so (ver 3.4.5)
-- NumPy : /usr/lib64/python3.4/site-packages/numpy/core/include (ver 1.12.1)
现在 make -j8 命令顺利完成。我注意到我在编译 (-j8) 时使用了多线程选项,因为我在一些论坛上发现建议只使用 -j1(单线程),所以我不是这种情况。
我的 Make.config 中有以下内容:
PYTHON_LIB := /usr/lib
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
以及我的 ~/.bashrc 中的以下内容:
export PYTHONPATH=$HOME/caffe/python
export CAFFE_ROOT=$HOME/caffe
您必须 运行 在 cd $CAFFE_ROOT 中执行以下操作: 让所有 制作pycaffe 进行测试 进行运行测试
我的设置是在 CentOS 和 Python 2.7 中,但它应该是类似的想法。
[jalal@ivcgpu1 caffe]$ lsb_release -a
LSB Version: :core-4.1-amd64:core-4.1-noarch:cxx-4.1-amd64:cxx-4.1-noarch:desktop-4.1-amd64:desktop-4.1-noarch:languages-4.1-amd64:languages-4.1-noarch:printing-4.1-amd64:printing-4.1-noarch
Distributor ID: CentOS
Description: CentOS Linux release 7.4.1708 (Core)
Release: 7.4.1708
Codename: Core
[jalal@ivcgpu1 caffe]$ uname -a
Linux ivcgpu1.bu.edu 3.10.0-514.26.2.el7.x86_64 #1 SMP Tue Jul 4 15:04:05 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux