`ddply` 无法按组将逻辑回归 (GLM) 应用于我的数据集
`ddply` fails to apply logistic regression (GLM) by group to my dataset
我正在使用 MASS
包计算来自不同实验的多个人群的 LD50(致死剂量)。当我对数据进行子集化并一次做一个时,这很简单,但是当我使用 ddply
时出现错误。本质上,我需要每个种群在每个温度下的 LD50。
我的数据看起来有点像这样:
# dput(d)
d <- structure(list(Pop = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L), .Label = c("a", "b", "c"), class = "factor"), Temp = structure(c(1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L), .Label = c("high", "low"), class = "factor"),
Dose = c(1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L,
1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L), Dead = c(0L,
11L, 12L, 14L, 2L, 16L, 17L, 7L, 5L, 3L, 17L, 15L, 9L, 20L,
8L, 19L, 7L, 2L, 20L, 14L, 9L, 15L, 1L, 15L), Alive = c(20L,
9L, 8L, 6L, 18L, 4L, 3L, 13L, 15L, 17L, 3L, 5L, 11L, 0L,
12L, 1L, 13L, 18L, 0L, 6L, 11L, 5L, 19L, 5L)), .Names = c("Pop",
"Temp", "Dose", "Dead", "Alive"), class = "data.frame", row.names = c(NA,
-24L))
以下工作正常:
d$Mortality <- cbind(d$Alive, d$Dead)
a <- d[d$Pop=="a" & d$Temp=="high",]
library(MASS)
dose.p(glm(Mortality ~ Dose, family="binomial", data=a), p=0.5)[1]
但是当我将其放入 ddply
时,出现以下错误:
library(plyr)
d$index <- paste(d$Pop, d$Temp, sep="_")
ddply(d, 'index', function(x) dose.p(glm(Mortality~Dose, family="binomial", data=x), p=0.5)[1])
Error in eval(expr, envir, enclos) : y values must be 0 <= y <= 1
当我使用比例时,我可以获得正确的 LD50,但无法弄清楚我的方法哪里出了问题(并且已经写过这个问题)。
也许这会让您大吃一惊。但是如果你选择使用公式
cbind(Alive, Dead) ~ Dose
而不是
Mortality ~ Dose
问题就解决了。
library(MASS)
library(plyr)
## `d` is as your `dput` result
## a function to apply
f <- function(x) {
fit <- glm(cbind(Alive, Dead) ~ Dose, family = "binomial", data = x)
dose.p(fit, p=0.5)[[1]]
}
## call `ddply`
ddply(d, .(Pop, Temp), f)
# Pop Temp V1
#1 a high 2.6946257
#2 a low 2.1834099
#3 b high 2.5000000
#4 b low 0.4830998
#5 c high 2.2899553
#6 c low 2.5000000
那么 Mortality ~ Dose
发生了什么?让我们在调用 ddply
时设置 .inform = TRUE
:
## `d` is as your `dput` result
d$Mortality <- cbind(d$Alive, d$Dead)
## a function to apply
g <- function(x) {
fit <- glm(Mortality ~ Dose, family = "binomial", data = x)
dose.p(fit, p=0.5)[[1]]
}
## call `ddply`
ddply(d, .(Pop, Temp), g, .inform = TRUE)
#Error in eval(expr, envir, enclos) : y values must be 0 <= y <= 1
#Error: with piece 1:
# Pop Temp Dose Dead Alive Mortality
#1 a high 1 0 20 20
#2 a high 2 11 9 9
#3 a high 3 12 8 8
#4 a high 4 14 6 6
现在我们看到变量Mortality
失去了维度,只保留了第一列(Alive
)。对于具有 binomial
响应的 glm
,如果响应是单个向量,则 glm
需要 0-1 二进制或两个级别的因子。现在,我们有整数 20、9、8、6,...,因此 glm
会抱怨
Error in eval(expr, envir, enclos) : y values must be 0 <= y <= 1
这个问题真的没有办法解决。我试过使用保护器:
d$Mortality <- I(cbind(d$Alive, d$Dead))
但还是以同样的失败告终。
我正在使用 MASS
包计算来自不同实验的多个人群的 LD50(致死剂量)。当我对数据进行子集化并一次做一个时,这很简单,但是当我使用 ddply
时出现错误。本质上,我需要每个种群在每个温度下的 LD50。
我的数据看起来有点像这样:
# dput(d)
d <- structure(list(Pop = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L), .Label = c("a", "b", "c"), class = "factor"), Temp = structure(c(1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L), .Label = c("high", "low"), class = "factor"),
Dose = c(1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L,
1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L), Dead = c(0L,
11L, 12L, 14L, 2L, 16L, 17L, 7L, 5L, 3L, 17L, 15L, 9L, 20L,
8L, 19L, 7L, 2L, 20L, 14L, 9L, 15L, 1L, 15L), Alive = c(20L,
9L, 8L, 6L, 18L, 4L, 3L, 13L, 15L, 17L, 3L, 5L, 11L, 0L,
12L, 1L, 13L, 18L, 0L, 6L, 11L, 5L, 19L, 5L)), .Names = c("Pop",
"Temp", "Dose", "Dead", "Alive"), class = "data.frame", row.names = c(NA,
-24L))
以下工作正常:
d$Mortality <- cbind(d$Alive, d$Dead)
a <- d[d$Pop=="a" & d$Temp=="high",]
library(MASS)
dose.p(glm(Mortality ~ Dose, family="binomial", data=a), p=0.5)[1]
但是当我将其放入 ddply
时,出现以下错误:
library(plyr)
d$index <- paste(d$Pop, d$Temp, sep="_")
ddply(d, 'index', function(x) dose.p(glm(Mortality~Dose, family="binomial", data=x), p=0.5)[1])
Error in eval(expr, envir, enclos) : y values must be 0 <= y <= 1
当我使用比例时,我可以获得正确的 LD50,但无法弄清楚我的方法哪里出了问题(并且已经写过这个问题)。
也许这会让您大吃一惊。但是如果你选择使用公式
cbind(Alive, Dead) ~ Dose
而不是
Mortality ~ Dose
问题就解决了。
library(MASS)
library(plyr)
## `d` is as your `dput` result
## a function to apply
f <- function(x) {
fit <- glm(cbind(Alive, Dead) ~ Dose, family = "binomial", data = x)
dose.p(fit, p=0.5)[[1]]
}
## call `ddply`
ddply(d, .(Pop, Temp), f)
# Pop Temp V1
#1 a high 2.6946257
#2 a low 2.1834099
#3 b high 2.5000000
#4 b low 0.4830998
#5 c high 2.2899553
#6 c low 2.5000000
那么 Mortality ~ Dose
发生了什么?让我们在调用 ddply
时设置 .inform = TRUE
:
## `d` is as your `dput` result
d$Mortality <- cbind(d$Alive, d$Dead)
## a function to apply
g <- function(x) {
fit <- glm(Mortality ~ Dose, family = "binomial", data = x)
dose.p(fit, p=0.5)[[1]]
}
## call `ddply`
ddply(d, .(Pop, Temp), g, .inform = TRUE)
#Error in eval(expr, envir, enclos) : y values must be 0 <= y <= 1
#Error: with piece 1:
# Pop Temp Dose Dead Alive Mortality
#1 a high 1 0 20 20
#2 a high 2 11 9 9
#3 a high 3 12 8 8
#4 a high 4 14 6 6
现在我们看到变量Mortality
失去了维度,只保留了第一列(Alive
)。对于具有 binomial
响应的 glm
,如果响应是单个向量,则 glm
需要 0-1 二进制或两个级别的因子。现在,我们有整数 20、9、8、6,...,因此 glm
会抱怨
Error in eval(expr, envir, enclos) : y values must be 0 <= y <= 1
这个问题真的没有办法解决。我试过使用保护器:
d$Mortality <- I(cbind(d$Alive, d$Dead))
但还是以同样的失败告终。