遗传算法中的(非)均匀变异是什么意思?

What is meant by (non-) uniform mutation in genetic algorithms?

我一直在研究关于遗传算法的文献研究,以准备一个项目。在研究变异时,我经常遇到术语“均匀变异”和“非均匀变异”。

Wikipedia将统一突变和非统一突变解释为“类型”:

Uniform Mutation: This operator replaces the value of the chosen gene with a uniform random value selected between the user-specified upper and lower bounds for that gene. This mutation operator can only be used for integer and float genes.

Non-Uniform Mutation: The probability that amount of mutation will go to 0 with the next generation is increased by using non-uniform mutation operator. It keeps the population from stagnating in the early stages of the evolution. It tunes solution in later stages of evolution. This mutation operator can only be used for integer and float genes.

A powerpoint presentation关于遗传算法的主题在浮点突变的背景下解释均匀突变:

xi' is drawn randomly (uniform) from [Lower bound, Upper bound]. It is analogous to bit-flipping of binary strings or random resetting of integer strings.

The MathWorks documentation 将统一突变解释为:

Uniform mutation is a two-step process. First, the algorithm selects a fraction of the vector entries of an individual for mutation, where each entry has a probability Rate of being mutated. The default value of Rate is 0.01. In the second step, the algorithm replaces each selected entry by a random number selected uniformly from the range for that entry.

根据 MathWorks 对统一为“随机”的解释,我找到了 this 来源,它甚至没有命名统一或非统一突变。

但是,没有提供关于它实际上是什么的信息。我不确定它是否是遵循某些属性的某些方法的总称,或者它是否是一种独立的方法,如维基百科所说。 我找不到该术语作为一种方法的任何实际演示。但我也找不到该术语作为总称的任何定义。由于一位消息人士称它类似于位翻转,我不确定。

在遗传算法的上下文中,统一和非统一突变是什么意思,使用此类方法或术语的示例是什么?

均匀突变 - 随机选择一定比例的基因,比如 1%,并将它们设置为随机值,并在整个程序中以相同的速率执行此操作。

非均匀突变 - 任何其他方案,但通常您要么随着种群变得更健康而降低突变率(因此在几千代后突变 0.1% 的基因),或者随着时间的推移使突变变小(因此添加或减去一个或两个位置而不是设置为随机)。